test_graphbolt_utils.py 13.1 KB
Newer Older
1
import dgl.graphbolt as gb
2
import pytest
3
4
5
import torch


6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
def test_find_reverse_edges_homo():
    edges = (torch.tensor([1, 3, 5]), torch.tensor([2, 4, 5]))
    edges = gb.add_reverse_edges(edges)
    expected_edges = (
        torch.tensor([1, 3, 5, 2, 4, 5]),
        torch.tensor([2, 4, 5, 1, 3, 5]),
    )
    assert torch.equal(edges[0], expected_edges[0])
    assert torch.equal(edges[1], expected_edges[1])


def test_find_reverse_edges_hetero():
    edges = {
        "A:r:B": (torch.tensor([1, 5]), torch.tensor([2, 5])),
        "B:rr:A": (torch.tensor([3]), torch.tensor([3])),
    }
    edges = gb.add_reverse_edges(edges, {"A:r:B": "B:rr:A"})
    expected_edges = {
        "A:r:B": (torch.tensor([1, 5]), torch.tensor([2, 5])),
        "B:rr:A": (torch.tensor([3, 2, 5]), torch.tensor([3, 1, 5])),
    }
    assert torch.equal(edges["A:r:B"][0], expected_edges["A:r:B"][0])
    assert torch.equal(edges["A:r:B"][1], expected_edges["A:r:B"][1])
    assert torch.equal(edges["B:rr:A"][0], expected_edges["B:rr:A"][0])
    assert torch.equal(edges["B:rr:A"][1], expected_edges["B:rr:A"][1])


def test_find_reverse_edges_bi_reverse_types():
    edges = {
        "A:r:B": (torch.tensor([1, 5]), torch.tensor([2, 5])),
        "B:rr:A": (torch.tensor([3]), torch.tensor([3])),
    }
    edges = gb.add_reverse_edges(edges, {"A:r:B": "B:rr:A", "B:rr:A": "A:r:B"})
    expected_edges = {
        "A:r:B": (torch.tensor([1, 5, 3]), torch.tensor([2, 5, 3])),
        "B:rr:A": (torch.tensor([3, 2, 5]), torch.tensor([3, 1, 5])),
    }
    assert torch.equal(edges["A:r:B"][0], expected_edges["A:r:B"][0])
    assert torch.equal(edges["A:r:B"][1], expected_edges["A:r:B"][1])
    assert torch.equal(edges["B:rr:A"][0], expected_edges["B:rr:A"][0])
    assert torch.equal(edges["B:rr:A"][1], expected_edges["B:rr:A"][1])


def test_find_reverse_edges_circual_reverse_types():
    edges = {
        "A:r1:B": (torch.tensor([1]), torch.tensor([1])),
        "B:r2:C": (torch.tensor([2]), torch.tensor([2])),
        "C:r3:A": (torch.tensor([3]), torch.tensor([3])),
    }
    edges = gb.add_reverse_edges(
        edges, {"A:r1:B": "B:r2:C", "B:r2:C": "C:r3:A", "C:r3:A": "A:r1:B"}
    )
    expected_edges = {
        "A:r1:B": (torch.tensor([1, 3]), torch.tensor([1, 3])),
        "B:r2:C": (torch.tensor([2, 1]), torch.tensor([2, 1])),
        "C:r3:A": (torch.tensor([3, 2]), torch.tensor([3, 2])),
    }
    assert torch.equal(edges["A:r1:B"][0], expected_edges["A:r1:B"][0])
    assert torch.equal(edges["A:r1:B"][1], expected_edges["A:r1:B"][1])
    assert torch.equal(edges["B:r2:C"][0], expected_edges["B:r2:C"][0])
    assert torch.equal(edges["B:r2:C"][1], expected_edges["B:r2:C"][1])
    assert torch.equal(edges["A:r1:B"][0], expected_edges["A:r1:B"][0])
    assert torch.equal(edges["A:r1:B"][1], expected_edges["A:r1:B"][1])
    assert torch.equal(edges["C:r3:A"][0], expected_edges["C:r3:A"][0])
    assert torch.equal(edges["C:r3:A"][1], expected_edges["C:r3:A"][1])


73
def test_unique_and_compact_hetero():
74
75
76
    N1 = torch.tensor([0, 5, 2, 7, 12, 7, 9, 5, 6, 2, 3, 4, 1, 0, 9])
    N2 = torch.tensor([0, 3, 3, 5, 2, 7, 2, 8, 4, 9, 2, 3])
    N3 = torch.tensor([1, 2, 6, 6, 1, 8, 3, 6, 3, 2])
77
    expected_unique = {
78
79
80
        "n1": torch.tensor([0, 5, 2, 7, 12, 9, 6, 3, 4, 1]),
        "n2": torch.tensor([0, 3, 5, 2, 7, 8, 4, 9]),
        "n3": torch.tensor([1, 2, 6, 8, 3]),
81
82
83
84
85
86
    }
    nodes_dict = {
        "n1": N1.split(5),
        "n2": N2.split(4),
        "n3": N3.split(2),
    }
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
    expected_nodes_dict = {
        "n1": [
            torch.tensor([0, 1, 2, 3, 4]),
            torch.tensor([3, 5, 1, 6, 2]),
            torch.tensor([7, 8, 9, 0, 5]),
        ],
        "n2": [
            torch.tensor([0, 1, 1, 2]),
            torch.tensor([3, 4, 3, 5]),
            torch.tensor([6, 7, 3, 1]),
        ],
        "n3": [
            torch.tensor([0, 1]),
            torch.tensor([2, 2]),
            torch.tensor([0, 3]),
            torch.tensor([4, 2]),
            torch.tensor([4, 1]),
        ],
    }
106
107
108
109

    unique, compacted = gb.unique_and_compact(nodes_dict)
    for ntype, nodes in unique.items():
        expected_nodes = expected_unique[ntype]
110
        assert torch.equal(nodes, expected_nodes)
111
112

    for ntype, nodes in compacted.items():
113
        expected_nodes = expected_nodes_dict[ntype]
114
        assert isinstance(nodes, list)
115
116
117
118
119
        for expected_node, node in zip(expected_nodes, nodes):
            assert torch.equal(expected_node, node)


def test_unique_and_compact_homo():
120
121
    N = torch.tensor([0, 5, 2, 7, 12, 7, 9, 5, 6, 2, 3, 4, 1, 0, 9])
    expected_unique_N = torch.tensor([0, 5, 2, 7, 12, 9, 6, 3, 4, 1])
122
    nodes_list = N.split(5)
123
124
125
126
127
    expected_nodes_list = [
        torch.tensor([0, 1, 2, 3, 4]),
        torch.tensor([3, 5, 1, 6, 2]),
        torch.tensor([7, 8, 9, 0, 5]),
    ]
128
129
130

    unique, compacted = gb.unique_and_compact(nodes_list)

131
    assert torch.equal(unique, expected_unique_N)
132
    assert isinstance(compacted, list)
133
    for expected_node, node in zip(expected_nodes_list, compacted):
134
135
136
        assert torch.equal(expected_node, node)


137
def test_unique_and_compact_node_pairs_hetero():
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    node_pairs = {
        "n1:e1:n2": (
            torch.tensor([1, 3, 4, 6, 2, 7, 9, 4, 2, 6]),
            torch.tensor([2, 2, 2, 4, 1, 1, 1, 3, 3, 3]),
        ),
        "n1:e2:n3": (
            torch.tensor([5, 2, 6, 4, 7, 2, 8, 1, 3, 0]),
            torch.tensor([1, 3, 3, 3, 2, 2, 2, 7, 7, 7]),
        ),
        "n2:e3:n3": (
            torch.tensor([2, 5, 4, 1, 4, 3, 6, 0]),
            torch.tensor([1, 1, 3, 3, 2, 2, 7, 7]),
        ),
    }

153
    expected_unique_nodes = {
154
155
156
        "n1": torch.tensor([1, 3, 4, 6, 2, 7, 9, 5, 8, 0]),
        "n2": torch.tensor([1, 2, 3, 4, 5, 6, 0]),
        "n3": torch.tensor([1, 2, 3, 7]),
157
    }
158
    expected_node_pairs = {
159
        "n1:e1:n2": (
160
161
            torch.tensor([0, 1, 2, 3, 4, 5, 6, 2, 4, 3]),
            torch.tensor([1, 1, 1, 3, 0, 0, 0, 2, 2, 2]),
162
        ),
163
        "n1:e2:n3": (
164
165
            torch.tensor([7, 4, 3, 2, 5, 4, 8, 0, 1, 9]),
            torch.tensor([0, 2, 2, 2, 1, 1, 1, 3, 3, 3]),
166
        ),
167
        "n2:e3:n3": (
168
169
            torch.tensor([1, 4, 3, 0, 3, 2, 5, 6]),
            torch.tensor([0, 0, 2, 2, 1, 1, 3, 3]),
170
171
172
173
174
175
        ),
    }

    unique_nodes, compacted_node_pairs = gb.unique_and_compact_node_pairs(
        node_pairs
    )
176
177
    for ntype, nodes in unique_nodes.items():
        expected_nodes = expected_unique_nodes[ntype]
178
        assert torch.equal(nodes, expected_nodes)
179
180
    for etype, pair in compacted_node_pairs.items():
        u, v = pair
181
        expected_u, expected_v = expected_node_pairs[etype]
182
183
184
185
186
        assert torch.equal(u, expected_u)
        assert torch.equal(v, expected_v)


def test_unique_and_compact_node_pairs_homo():
187
188
189
    dst_nodes = torch.tensor([1, 1, 3, 3, 5, 5, 2, 6, 6, 6, 6])
    src_ndoes = torch.tensor([2, 3, 1, 4, 5, 2, 5, 1, 4, 4, 6])
    node_pairs = (src_ndoes, dst_nodes)
190

191
192
193
    expected_unique_nodes = torch.tensor([1, 2, 3, 5, 6, 4])
    expected_dst_nodes = torch.tensor([0, 0, 2, 2, 3, 3, 1, 4, 4, 4, 4])
    expected_src_ndoes = torch.tensor([1, 2, 0, 5, 3, 1, 3, 0, 5, 5, 4])
194
195
196
    unique_nodes, compacted_node_pairs = gb.unique_and_compact_node_pairs(
        node_pairs
    )
197
    assert torch.equal(unique_nodes, expected_unique_nodes)
198

199
    u, v = compacted_node_pairs
200
201
202
    assert torch.equal(u, expected_src_ndoes)
    assert torch.equal(v, expected_dst_nodes)
    assert torch.equal(unique_nodes[:5], torch.tensor([1, 2, 3, 5, 6]))
203
204
205


def test_incomplete_unique_dst_nodes_():
206
    node_pairs = (torch.arange(0, 50), torch.arange(100, 150))
207
208
209
    unique_dst_nodes = torch.arange(150, 200)
    with pytest.raises(IndexError):
        gb.unique_and_compact_node_pairs(node_pairs, unique_dst_nodes)
210
211


212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
def test_unique_and_compact_csc_formats_hetero():
    dst_nodes = {
        "n2": torch.tensor([2, 4, 1, 3]),
        "n3": torch.tensor([1, 3, 2, 7]),
    }
    csc_formats = {
        "n1:e1:n2": gb.CSCFormatBase(
            indptr=torch.tensor([0, 3, 4, 7, 10]),
            indices=torch.tensor([1, 3, 4, 6, 2, 7, 9, 4, 2, 6]),
        ),
        "n1:e2:n3": gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 4, 7, 10]),
            indices=torch.tensor([5, 2, 6, 4, 7, 2, 8, 1, 3, 0]),
        ),
        "n2:e3:n3": gb.CSCFormatBase(
            indptr=torch.tensor([0, 2, 4, 6, 8]),
            indices=torch.tensor([2, 5, 4, 1, 4, 3, 6, 0]),
        ),
    }

    expected_unique_nodes = {
        "n1": torch.tensor([1, 3, 4, 6, 2, 7, 9, 5, 8, 0]),
        "n2": torch.tensor([2, 4, 1, 3, 5, 6, 0]),
        "n3": torch.tensor([1, 3, 2, 7]),
    }
    expected_csc_formats = {
        "n1:e1:n2": gb.CSCFormatBase(
            indptr=torch.tensor([0, 3, 4, 7, 10]),
            indices=torch.tensor([0, 1, 2, 3, 4, 5, 6, 2, 4, 3]),
        ),
        "n1:e2:n3": gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 4, 7, 10]),
            indices=torch.tensor([7, 4, 3, 2, 5, 4, 8, 0, 1, 9]),
        ),
        "n2:e3:n3": gb.CSCFormatBase(
            indptr=torch.tensor([0, 2, 4, 6, 8]),
            indices=torch.tensor([0, 4, 1, 2, 1, 3, 5, 6]),
        ),
    }

    unique_nodes, compacted_csc_formats = gb.unique_and_compact_csc_formats(
        csc_formats, dst_nodes
    )

    for ntype, nodes in unique_nodes.items():
        expected_nodes = expected_unique_nodes[ntype]
        assert torch.equal(nodes, expected_nodes)
    for etype, pair in compacted_csc_formats.items():
        indices = pair.indices
        indptr = pair.indptr
        expected_indices = expected_csc_formats[etype].indices
        expected_indptr = expected_csc_formats[etype].indptr
        assert torch.equal(indices, expected_indices)
        assert torch.equal(indptr, expected_indptr)


def test_unique_and_compact_csc_formats_homo():
    seeds = torch.tensor([1, 3, 5, 2, 6])
    indptr = torch.tensor([0, 2, 4, 6, 7, 10, 11])
    indices = torch.tensor([2, 3, 1, 4, 5, 2, 5, 1, 4, 4, 6])
    csc_formats = gb.CSCFormatBase(indptr=indptr, indices=indices)

    expected_unique_nodes = torch.tensor([1, 3, 5, 2, 6, 4])
    expected_indptr = indptr
    expected_indices = torch.tensor([3, 1, 0, 5, 2, 3, 2, 0, 5, 5, 4])

    unique_nodes, compacted_csc_formats = gb.unique_and_compact_csc_formats(
        csc_formats, seeds
    )

    indptr = compacted_csc_formats.indptr
    indices = compacted_csc_formats.indices
    assert torch.equal(indptr, expected_indptr)
    assert torch.equal(indices, expected_indices)
    assert torch.equal(unique_nodes, expected_unique_nodes)


289
def test_compact_csc_format_hetero():
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
    dst_nodes = {
        "n2": torch.tensor([2, 4, 1, 3]),
        "n3": torch.tensor([1, 3, 2, 7]),
    }
    csc_formats = {
        "n1:e1:n2": gb.CSCFormatBase(
            indptr=torch.tensor([0, 3, 4, 7, 10]),
            indices=torch.tensor([1, 3, 4, 6, 2, 7, 9, 4, 2, 6]),
        ),
        "n1:e2:n3": gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 4, 7, 10]),
            indices=torch.tensor([5, 2, 6, 4, 7, 2, 8, 1, 3, 0]),
        ),
        "n2:e3:n3": gb.CSCFormatBase(
            indptr=torch.tensor([0, 2, 4, 6, 8]),
            indices=torch.tensor([2, 5, 4, 1, 4, 3, 6, 0]),
        ),
    }
308
309

    expected_original_row_ids = {
310
311
312
313
314
        "n1": torch.tensor(
            [1, 3, 4, 6, 2, 7, 9, 4, 2, 6, 5, 2, 6, 4, 7, 2, 8, 1, 3, 0]
        ),
        "n2": torch.tensor([2, 4, 1, 3, 2, 5, 4, 1, 4, 3, 6, 0]),
        "n3": torch.tensor([1, 3, 2, 7]),
315
    }
316
    expected_csc_formats = {
317
        "n1:e1:n2": gb.CSCFormatBase(
318
319
            indptr=torch.tensor([0, 3, 4, 7, 10]),
            indices=torch.arange(0, 10),
320
321
        ),
        "n1:e2:n3": gb.CSCFormatBase(
322
323
            indptr=torch.tensor([0, 1, 4, 7, 10]),
            indices=torch.arange(0, 10) + 10,
324
325
        ),
        "n2:e3:n3": gb.CSCFormatBase(
326
327
            indptr=torch.tensor([0, 2, 4, 6, 8]),
            indices=torch.arange(0, 8) + 4,
328
329
330
331
332
333
334
335
336
337
338
339
        ),
    }
    original_row_ids, compacted_csc_formats = gb.compact_csc_format(
        csc_formats, dst_nodes
    )

    for ntype, nodes in original_row_ids.items():
        expected_nodes = expected_original_row_ids[ntype]
        assert torch.equal(nodes, expected_nodes)
    for etype, csc_format in compacted_csc_formats.items():
        indptr = csc_format.indptr
        indices = csc_format.indices
340
341
        expected_indptr = expected_csc_formats[etype].indptr
        expected_indices = expected_csc_formats[etype].indices
342
343
344
345
346
        assert torch.equal(indptr, expected_indptr)
        assert torch.equal(indices, expected_indices)


def test_compact_csc_format_homo():
347
348
349
350
    seeds = torch.tensor([1, 3, 5, 2, 6])
    indptr = torch.tensor([0, 2, 4, 6, 7, 11])
    indices = torch.tensor([2, 3, 1, 4, 5, 2, 5, 1, 4, 4, 6])
    csc_formats = gb.CSCFormatBase(indptr=indptr, indices=indices)
351

352
353
    expected_original_row_ids = torch.tensor(
        [1, 3, 5, 2, 6, 2, 3, 1, 4, 5, 2, 5, 1, 4, 4, 6]
354
    )
355
356
357
    expected_indptr = indptr
    expected_indices = torch.arange(0, len(indices)) + 5

358
    original_row_ids, compacted_csc_formats = gb.compact_csc_format(
359
        csc_formats, seeds
360
361
362
    )

    indptr = compacted_csc_formats.indptr
363
364
    indices = compacted_csc_formats.indices

365
366
367
    assert torch.equal(indptr, expected_indptr)
    assert torch.equal(indices, expected_indices)
    assert torch.equal(original_row_ids, expected_original_row_ids)