utils.py 2.87 KB
Newer Older
1
import random
2
3

import numpy as np
4
5
import torch
import torch.nn.functional as F
6
7
8
from models import MWE_DGCN, MWE_GCN


9
10
11
12
13
14
def set_random_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)
15
16
    print("random seed set to be " + str(seed))

17
18

def load_model(args):
19
    if args["model"] == "MWE-GCN":
20
        model = MWE_GCN(
21
22
23
24
25
26
27
28
29
30
            n_input=args["in_feats"],
            n_hidden=args["hidden_feats"],
            n_output=args["out_feats"],
            n_layers=args["n_layers"],
            activation=torch.nn.Tanh(),
            dropout=args["dropout"],
            aggr_mode=args["aggr_mode"],
            device=args["device"],
        )
    elif args["model"] == "MWE-DGCN":
31
        model = MWE_DGCN(
32
33
34
35
36
37
38
39
40
41
            n_input=args["in_feats"],
            n_hidden=args["hidden_feats"],
            n_output=args["out_feats"],
            n_layers=args["n_layers"],
            activation=torch.nn.ReLU(),
            dropout=args["dropout"],
            aggr_mode=args["aggr_mode"],
            residual=args["residual"],
            device=args["device"],
        )
42
    else:
43
        raise ValueError("Unexpected model {}".format(args["model"]))
44
45
46

    return model

47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
class Logger(object):
    def __init__(self, runs, info=None):
        self.info = info
        self.results = [[] for _ in range(runs)]

    def add_result(self, run, result):
        assert len(result) == 3
        assert run >= 0 and run < len(self.results)
        self.results[run].append(result)

    def print_statistics(self, run=None):
        if run is not None:
            result = 100 * torch.tensor(self.results[run])
            argmax = result[:, 1].argmax().item()
62
63
64
65
66
            print(f"Run {run + 1:02d}:")
            print(f"Highest Train: {result[:, 0].max():.2f}")
            print(f"Highest Valid: {result[:, 1].max():.2f}")
            print(f"  Final Train: {result[argmax, 0]:.2f}")
            print(f"   Final Test: {result[argmax, 2]:.2f}")
67
68
69
70
71
72
73
74
75
76
77
78
79
        else:
            result = 100 * torch.tensor(self.results)

            best_results = []
            for r in result:
                train1 = r[:, 0].max().item()
                valid = r[:, 1].max().item()
                train2 = r[r[:, 1].argmax(), 0].item()
                test = r[r[:, 1].argmax(), 2].item()
                best_results.append((train1, valid, train2, test))

            best_result = torch.tensor(best_results)

80
            print(f"All runs:")
81
            r = best_result[:, 0]
82
            print(f"Highest Train: {r.mean():.2f} ± {r.std():.2f}")
83
            r = best_result[:, 1]
84
            print(f"Highest Valid: {r.mean():.2f} ± {r.std():.2f}")
85
            r = best_result[:, 2]
86
            print(f"  Final Train: {r.mean():.2f} ± {r.std():.2f}")
87
            r = best_result[:, 3]
88
            print(f"   Final Test: {r.mean():.2f} ± {r.std():.2f}")