gat.py 16.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#!/usr/bin/env python
# -*- coding: utf-8 -*-

import argparse
import os
import random
import sys
import time

import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as optim
from matplotlib.ticker import AutoMinorLocator, MultipleLocator
16
from models import GAT
17
18
19
from ogb.nodeproppred import DglNodePropPredDataset, Evaluator
from torch import nn

20
21
22
23
24
25
26
import dgl
import dgl.function as fn
from dgl.dataloading import (
    DataLoader,
    MultiLayerFullNeighborSampler,
    MultiLayerNeighborSampler,
)
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

device = None
dataset = "ogbn-proteins"
n_node_feats, n_edge_feats, n_classes = 0, 8, 112


def seed(seed=0):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    dgl.random.seed(seed)


def load_data(dataset):
    data = DglNodePropPredDataset(name=dataset)
    evaluator = Evaluator(name=dataset)

    splitted_idx = data.get_idx_split()
49
50
51
52
53
    train_idx, val_idx, test_idx = (
        splitted_idx["train"],
        splitted_idx["valid"],
        splitted_idx["test"],
    )
54
55
56
57
58
59
60
61
62
63
    graph, labels = data[0]
    graph.ndata["labels"] = labels

    return graph, labels, train_idx, val_idx, test_idx, evaluator


def preprocess(graph, labels, train_idx):
    global n_node_feats

    # The sum of the weights of adjacent edges is used as node features.
64
65
66
    graph.update_all(
        fn.copy_e("feat", "feat_copy"), fn.sum("feat_copy", "feat")
    )
67
68
69
    n_node_feats = graph.ndata["feat"].shape[-1]

    # Only the labels in the training set are used as features, while others are filled with zeros.
70
71
72
    graph.ndata["train_labels_onehot"] = torch.zeros(
        graph.number_of_nodes(), n_classes
    )
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    graph.ndata["train_labels_onehot"][train_idx, labels[train_idx, 0]] = 1
    graph.ndata["deg"] = graph.out_degrees().float().clamp(min=1)

    graph.create_formats_()

    return graph, labels


def gen_model(args):
    if args.use_labels:
        n_node_feats_ = n_node_feats + n_classes
    else:
        n_node_feats_ = n_node_feats

    model = GAT(
        n_node_feats_,
        n_edge_feats,
        n_classes,
        n_layers=args.n_layers,
        n_heads=args.n_heads,
        n_hidden=args.n_hidden,
        edge_emb=16,
        activation=F.relu,
        dropout=args.dropout,
        input_drop=args.input_drop,
        attn_drop=args.attn_drop,
        edge_drop=args.edge_drop,
        use_attn_dst=not args.no_attn_dst,
    )

    return model


def add_labels(graph, idx):
    feat = graph.srcdata["feat"]
    train_labels_onehot = torch.zeros([feat.shape[0], n_classes], device=device)
    train_labels_onehot[idx] = graph.srcdata["train_labels_onehot"][idx]
    graph.srcdata["feat"] = torch.cat([feat, train_labels_onehot], dim=-1)


113
114
115
116
117
118
119
120
121
122
def train(
    args,
    model,
    dataloader,
    _labels,
    _train_idx,
    criterion,
    optimizer,
    _evaluator,
):
123
124
125
126
127
128
129
130
131
    model.train()

    loss_sum, total = 0, 0

    for input_nodes, output_nodes, subgraphs in dataloader:
        subgraphs = [b.to(device) for b in subgraphs]
        new_train_idx = torch.arange(len(output_nodes), device=device)

        if args.use_labels:
132
133
134
            train_labels_idx = torch.arange(
                len(output_nodes), len(input_nodes), device=device
            )
135
136
137
138
139
140
141
            train_pred_idx = new_train_idx

            add_labels(subgraphs[0], train_labels_idx)
        else:
            train_pred_idx = new_train_idx

        pred = model(subgraphs)
142
143
144
145
        loss = criterion(
            pred[train_pred_idx],
            subgraphs[-1].dstdata["labels"][train_pred_idx].float(),
        )
146
147
148
149
150
151
152
153
154
155
156
157
158
159
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        count = len(train_pred_idx)
        loss_sum += loss.item() * count
        total += count

        # torch.cuda.empty_cache()

    return loss_sum / total


@torch.no_grad()
160
161
162
163
164
165
166
167
168
169
170
def evaluate(
    args,
    model,
    dataloader,
    labels,
    train_idx,
    val_idx,
    test_idx,
    criterion,
    evaluator,
):
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    model.eval()

    preds = torch.zeros(labels.shape).to(device)

    # Due to the memory capacity constraints, we use sampling for inference and calculate the average of the predictions 'eval_times' times.
    eval_times = 1

    for _ in range(eval_times):
        for input_nodes, output_nodes, subgraphs in dataloader:
            subgraphs = [b.to(device) for b in subgraphs]
            new_train_idx = list(range(len(input_nodes)))

            if args.use_labels:
                add_labels(subgraphs[0], new_train_idx)

            pred = model(subgraphs)
            preds[output_nodes] += pred

            # torch.cuda.empty_cache()

    preds /= eval_times

    train_loss = criterion(preds[train_idx], labels[train_idx].float()).item()
    val_loss = criterion(preds[val_idx], labels[val_idx].float()).item()
    test_loss = criterion(preds[test_idx], labels[test_idx].float()).item()

    return (
        evaluator(preds[train_idx], labels[train_idx]),
        evaluator(preds[val_idx], labels[val_idx]),
        evaluator(preds[test_idx], labels[test_idx]),
        train_loss,
        val_loss,
        test_loss,
        preds,
    )


208
209
210
211
212
213
def run(
    args, graph, labels, train_idx, val_idx, test_idx, evaluator, n_running
):
    evaluator_wrapper = lambda pred, labels: evaluator.eval(
        {"y_pred": pred, "y_true": labels}
    )["rocauc"]
214
215
216

    train_batch_size = (len(train_idx) + 9) // 10
    # batch_size = len(train_idx)
217
218
219
    train_sampler = MultiLayerNeighborSampler(
        [32 for _ in range(args.n_layers)]
    )
220
    # sampler = MultiLayerFullNeighborSampler(args.n_layers)
221
222
223
224
225
    train_dataloader = DataLoader(
        graph.cpu(),
        train_idx.cpu(),
        train_sampler,
        batch_size=train_batch_size,
226
        num_workers=10,
227
228
    )

229
230
231
    eval_sampler = MultiLayerNeighborSampler(
        [100 for _ in range(args.n_layers)]
    )
232
    # sampler = MultiLayerFullNeighborSampler(args.n_layers)
233
    eval_dataloader = DataLoader(
234
235
236
237
        graph.cpu(),
        torch.cat([train_idx.cpu(), val_idx.cpu(), test_idx.cpu()]),
        eval_sampler,
        batch_size=65536,
238
        num_workers=10,
239
240
241
242
243
244
    )

    criterion = nn.BCEWithLogitsLoss()

    model = gen_model(args).to(device)

245
246
247
248
249
250
    optimizer = optim.AdamW(
        model.parameters(), lr=args.lr, weight_decay=args.wd
    )
    lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau(
        optimizer, mode="max", factor=0.75, patience=50, verbose=True
    )
251
252
253
254
255
256
257
258
259
260
261

    total_time = 0
    val_score, best_val_score, final_test_score = 0, 0, 0

    train_scores, val_scores, test_scores = [], [], []
    losses, train_losses, val_losses, test_losses = [], [], [], []
    final_pred = None

    for epoch in range(1, args.n_epochs + 1):
        tic = time.time()

262
263
264
265
266
267
268
269
270
271
        loss = train(
            args,
            model,
            train_dataloader,
            labels,
            train_idx,
            criterion,
            optimizer,
            evaluator_wrapper,
        )
272
273
274
275

        toc = time.time()
        total_time += toc - tic

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        if (
            epoch == args.n_epochs
            or epoch % args.eval_every == 0
            or epoch % args.log_every == 0
        ):
            (
                train_score,
                val_score,
                test_score,
                train_loss,
                val_loss,
                test_loss,
                pred,
            ) = evaluate(
                args,
                model,
                eval_dataloader,
                labels,
                train_idx,
                val_idx,
                test_idx,
                criterion,
                evaluator_wrapper,
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
            )

            if val_score > best_val_score:
                best_val_score = val_score
                final_test_score = test_score
                final_pred = pred

            if epoch % args.log_every == 0:
                print(
                    f"Run: {n_running}/{args.n_runs}, Epoch: {epoch}/{args.n_epochs}, Average epoch time: {total_time / epoch:.2f}s"
                )
                print(
                    f"Loss: {loss:.4f}\n"
                    f"Train/Val/Test loss: {train_loss:.4f}/{val_loss:.4f}/{test_loss:.4f}\n"
                    f"Train/Val/Test/Best val/Final test score: {train_score:.4f}/{val_score:.4f}/{test_score:.4f}/{best_val_score:.4f}/{final_test_score:.4f}"
                )

            for l, e in zip(
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
                [
                    train_scores,
                    val_scores,
                    test_scores,
                    losses,
                    train_losses,
                    val_losses,
                    test_losses,
                ],
                [
                    train_score,
                    val_score,
                    test_score,
                    loss,
                    train_loss,
                    val_loss,
                    test_loss,
                ],
335
336
337
338
339
340
            ):
                l.append(e)

        lr_scheduler.step(val_score)

    print("*" * 50)
341
342
343
    print(
        f"Best val score: {best_val_score}, Final test score: {final_test_score}"
    )
344
345
346
347
348
349
350
351
    print("*" * 50)

    if args.plot:
        fig = plt.figure(figsize=(24, 24))
        ax = fig.gca()
        ax.set_xticks(np.arange(0, args.n_epochs, 100))
        ax.set_yticks(np.linspace(0, 1.0, 101))
        ax.tick_params(labeltop=True, labelright=True)
352
353
354
355
356
357
358
359
360
361
        for y, label in zip(
            [train_scores, val_scores, test_scores],
            ["train score", "val score", "test score"],
        ):
            plt.plot(
                range(1, args.n_epochs + 1, args.log_every),
                y,
                label=label,
                linewidth=1,
            )
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
        ax.xaxis.set_major_locator(MultipleLocator(100))
        ax.xaxis.set_minor_locator(AutoMinorLocator(1))
        ax.yaxis.set_major_locator(MultipleLocator(0.01))
        ax.yaxis.set_minor_locator(AutoMinorLocator(2))
        plt.grid(which="major", color="red", linestyle="dotted")
        plt.grid(which="minor", color="orange", linestyle="dotted")
        plt.legend()
        plt.tight_layout()
        plt.savefig(f"gat_score_{n_running}.png")

        fig = plt.figure(figsize=(24, 24))
        ax = fig.gca()
        ax.set_xticks(np.arange(0, args.n_epochs, 100))
        ax.tick_params(labeltop=True, labelright=True)
        for y, label in zip(
377
378
            [losses, train_losses, val_losses, test_losses],
            ["loss", "train loss", "val loss", "test loss"],
379
        ):
380
381
382
383
384
385
            plt.plot(
                range(1, args.n_epochs + 1, args.log_every),
                y,
                label=label,
                linewidth=1,
            )
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
        ax.xaxis.set_major_locator(MultipleLocator(100))
        ax.xaxis.set_minor_locator(AutoMinorLocator(1))
        ax.yaxis.set_major_locator(MultipleLocator(0.1))
        ax.yaxis.set_minor_locator(AutoMinorLocator(5))
        plt.grid(which="major", color="red", linestyle="dotted")
        plt.grid(which="minor", color="orange", linestyle="dotted")
        plt.legend()
        plt.tight_layout()
        plt.savefig(f"gat_loss_{n_running}.png")

    if args.save_pred:
        os.makedirs("./output", exist_ok=True)
        torch.save(F.softmax(final_pred, dim=1), f"./output/{n_running}.pt")

    return best_val_score, final_test_score


def count_parameters(args):
    model = gen_model(args)
405
406
407
    return sum(
        [np.prod(p.size()) for p in model.parameters() if p.requires_grad]
    )
408
409
410
411
412
413


def main():
    global device

    argparser = argparse.ArgumentParser(
414
415
416
417
418
419
420
        "GAT implementation on ogbn-proteins",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
    )
    argparser.add_argument(
        "--cpu",
        action="store_true",
        help="CPU mode. This option overrides '--gpu'.",
421
422
423
424
    )
    argparser.add_argument("--gpu", type=int, default=0, help="GPU device ID")
    argparser.add_argument("--seed", type=int, default=0, help="random seed")
    argparser.add_argument(
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
        "--n-runs", type=int, default=10, help="running times"
    )
    argparser.add_argument(
        "--n-epochs", type=int, default=1200, help="number of epochs"
    )
    argparser.add_argument(
        "--use-labels",
        action="store_true",
        help="Use labels in the training set as input features.",
    )
    argparser.add_argument(
        "--no-attn-dst", action="store_true", help="Don't use attn_dst."
    )
    argparser.add_argument(
        "--n-heads", type=int, default=6, help="number of heads"
    )
    argparser.add_argument(
        "--lr", type=float, default=0.01, help="learning rate"
    )
    argparser.add_argument(
        "--n-layers", type=int, default=6, help="number of layers"
    )
    argparser.add_argument(
        "--n-hidden", type=int, default=80, help="number of hidden units"
    )
    argparser.add_argument(
        "--dropout", type=float, default=0.25, help="dropout rate"
    )
    argparser.add_argument(
        "--input-drop", type=float, default=0.1, help="input drop rate"
    )
    argparser.add_argument(
        "--attn-drop", type=float, default=0.0, help="attention dropout rate"
    )
    argparser.add_argument(
        "--edge-drop", type=float, default=0.1, help="edge drop rate"
    )
462
    argparser.add_argument("--wd", type=float, default=0, help="weight decay")
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
    argparser.add_argument(
        "--eval-every",
        type=int,
        default=5,
        help="evaluate every EVAL_EVERY epochs",
    )
    argparser.add_argument(
        "--log-every", type=int, default=5, help="log every LOG_EVERY epochs"
    )
    argparser.add_argument(
        "--plot", action="store_true", help="plot learning curves"
    )
    argparser.add_argument(
        "--save-pred", action="store_true", help="save final predictions"
    )
478
479
480
481
482
483
484
485
486
487
488
489
490
    args = argparser.parse_args()

    if args.cpu:
        device = torch.device("cpu")
    else:
        device = torch.device(f"cuda:{args.gpu}")

    # load data & preprocess
    print("Loading data")
    graph, labels, train_idx, val_idx, test_idx, evaluator = load_data(dataset)
    print("Preprocessing")
    graph, labels = preprocess(graph, labels, train_idx)

491
492
493
    labels, train_idx, val_idx, test_idx = map(
        lambda x: x.to(device), (labels, train_idx, val_idx, test_idx)
    )
494
495
496
497
498
499
500

    # run
    val_scores, test_scores = [], []

    for i in range(args.n_runs):
        print("Running", i)
        seed(args.seed + i)
501
502
503
        val_score, test_score = run(
            args, graph, labels, train_idx, val_idx, test_idx, evaluator, i + 1
        )
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
        val_scores.append(val_score)
        test_scores.append(test_score)

    print(" ".join(sys.argv))
    print(args)
    print(f"Runned {args.n_runs} times")
    print("Val scores:", val_scores)
    print("Test scores:", test_scores)
    print(f"Average val score: {np.mean(val_scores)} ± {np.std(val_scores)}")
    print(f"Average test score: {np.mean(test_scores)} ± {np.std(test_scores)}")
    print(f"Number of params: {count_parameters(args)}")


if __name__ == "__main__":
    main()

# Namespace(attn_drop=0.0, cpu=False, dropout=0.25, edge_drop=0.1, eval_every=5, gpu=6, input_drop=0.1, log_every=5, lr=0.01, n_epochs=1200, n_heads=6, n_hidden=80, n_layers=6, n_runs=10, no_attn_dst=False, plot=True, save_pred=False, seed=0, use_labels=False, wd=0)
# Runned 10 times
# Val scores: [0.927741031859485, 0.9272113161947824, 0.9271363901359605, 0.9275579074100136, 0.9264291968462317, 0.9275278541203443, 0.9286381790529751, 0.9288245051991526, 0.9269289529175155, 0.9278177920224489]
# Test scores: [0.8754403567694566, 0.8749781870941457, 0.8735933245353141, 0.8759835445000637, 0.8745950242855286, 0.8742530369108132, 0.8784892022402326, 0.873345314887444, 0.8724393129004984, 0.874077975765639]
# Average val score: 0.927581312575891 ± 0.0006953509986591492
# Average test score: 0.8747195279889135 ± 0.001593598488797452
# Number of params: 2475232

# Namespace(attn_drop=0.0, cpu=False, dropout=0.25, edge_drop=0.1, eval_every=5, gpu=7, input_drop=0.1, log_every=5, lr=0.01, n_epochs=1200, n_heads=6, n_hidden=80, n_layers=6, n_runs=10, no_attn_dst=False, plot=True, save_pred=False, seed=0, use_labels=True, wd=0)
# Runned 10 times
# Val scores: [0.9293776332568928, 0.9281066322254939, 0.9286775378440911, 0.9270252685136046, 0.9267937838323375, 0.9277731792338011, 0.9285615428437761, 0.9270819730221879, 0.9276822010553241, 0.9287115722177839]
# Test scores: [0.8761623033485811, 0.8773002619440896, 0.8756680817047869, 0.8751873860287073, 0.875781797307807, 0.8764533839446703, 0.8771202308989311, 0.8765888651476396, 0.8773581283481205, 0.8777751912293709]
# Average val score: 0.9279791324045293 ± 0.0008115348697502517
# Average test score: 0.8765395629902706 ± 0.0008016806017700173
# Number of params: 2484192