model.py 20.8 KB
Newer Older
1
import random
2

3
import numpy as np
4
import torch
5
import torch.multiprocessing as mp
6
7
import torch.nn as nn
import torch.nn.functional as F
8
from torch.multiprocessing import Queue
9
10
from torch.nn import init

11
12

def init_emb2neg_index(negative, batch_size):
13
    """select embedding of negative nodes from a batch of node embeddings
14
    for fast negative sampling
15

16
17
18
19
20
21
22
23
24
    Return
    ------
    index_emb_negu torch.LongTensor : the indices of u_embeddings
    index_emb_negv torch.LongTensor : the indices of v_embeddings

    Usage
    -----
    # emb_u.shape: [batch_size, dim]
    batch_emb2negu = torch.index_select(emb_u, 0, index_emb_negu)
25
    """
26
27
28
29
30
31
32
33
34
    idx_list_u = list(range(batch_size)) * negative
    idx_list_v = list(range(batch_size)) * negative
    random.shuffle(idx_list_v)

    index_emb_negu = torch.LongTensor(idx_list_u)
    index_emb_negv = torch.LongTensor(idx_list_v)

    return index_emb_negu, index_emb_negv

35

36
def adam(grad, state_sum, nodes, lr, device, only_gpu):
37
    """calculate gradients according to adam"""
38
39
40
    grad_sum = (grad * grad).mean(1)
    if not only_gpu:
        grad_sum = grad_sum.cpu()
41
    state_sum.index_add_(0, nodes, grad_sum)  # cpu
42
43
    std = state_sum[nodes].to(device)  # gpu
    std_values = std.sqrt_().add_(1e-10).unsqueeze(1)
44
    grad = lr * grad / std_values  # gpu
45
46
47

    return grad

48

49
def async_update(num_threads, model, queue):
50
    """Asynchronous embedding update for entity embeddings."""
51
52
53
54
55
56
57
58
    torch.set_num_threads(num_threads)
    print("async start")
    while True:
        (grad_u, grad_v, grad_v_neg, nodes, neg_nodes, first_flag) = queue.get()
        if grad_u is None:
            return
        with torch.no_grad():
            if first_flag:
59
60
61
62
63
64
                model.fst_u_embeddings.weight.data.index_add_(
                    0, nodes[:, 0], grad_u
                )
                model.fst_u_embeddings.weight.data.index_add_(
                    0, nodes[:, 1], grad_v
                )
65
                if neg_nodes is not None:
66
67
68
                    model.fst_u_embeddings.weight.data.index_add_(
                        0, neg_nodes, grad_v_neg
                    )
69
            else:
70
71
72
73
74
75
                model.snd_u_embeddings.weight.data.index_add_(
                    0, nodes[:, 0], grad_u
                )
                model.snd_v_embeddings.weight.data.index_add_(
                    0, nodes[:, 1], grad_v
                )
76
                if neg_nodes is not None:
77
78
79
80
                    model.snd_v_embeddings.weight.data.index_add_(
                        0, neg_nodes, grad_v_neg
                    )

81
82

class SkipGramModel(nn.Module):
83
84
85
86
87
    """Negative sampling based skip-gram"""

    def __init__(
        self,
        emb_size,
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        emb_dimension,
        batch_size,
        only_cpu,
        only_gpu,
        only_fst,
        only_snd,
        mix,
        neg_weight,
        negative,
        lr,
        lap_norm,
        fast_neg,
        record_loss,
        async_update,
        num_threads,
103
104
    ):
        """initialize embedding on CPU
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

        Paremeters
        ----------
        emb_size int : number of nodes
        emb_dimension int : embedding dimension
        batch_size int : number of node sequences in each batch
        only_cpu bool : training with CPU
        only_gpu bool : training with GPU
        only_fst bool : only embedding for first-order proximity
        only_snd bool : only embedding for second-order proximity
        mix bool : mixed training with CPU and GPU
        negative int : negative samples for each positve node pair
        neg_weight float : negative weight
        lr float : initial learning rate
        lap_norm float : weight of laplacian normalization
        fast_neg bool : do negative sampling inside a batch
        record_loss bool : print the loss during training
        use_context_weight : give different weights to the nodes in a context window
        async_update : asynchronous training
        """
        super(SkipGramModel, self).__init__()
        self.emb_size = emb_size
        self.batch_size = batch_size
        self.only_cpu = only_cpu
        self.only_gpu = only_gpu
        if only_fst:
            self.fst = True
            self.snd = False
            self.emb_dimension = emb_dimension
        elif only_snd:
            self.fst = False
            self.snd = True
            self.emb_dimension = emb_dimension
        else:
            self.fst = True
            self.snd = True
            self.emb_dimension = int(emb_dimension / 2)
        self.mixed_train = mix
        self.neg_weight = neg_weight
        self.negative = negative
        self.lr = lr
        self.lap_norm = lap_norm
        self.fast_neg = fast_neg
        self.record_loss = record_loss
        self.async_update = async_update
        self.num_threads = num_threads
151

152
153
154
155
156
157
158
        # initialize the device as cpu
        self.device = torch.device("cpu")

        # embedding
        initrange = 1.0 / self.emb_dimension
        if self.fst:
            self.fst_u_embeddings = nn.Embedding(
159
160
161
162
163
                self.emb_size, self.emb_dimension, sparse=True
            )
            init.uniform_(
                self.fst_u_embeddings.weight.data, -initrange, initrange
            )
164
165
        if self.snd:
            self.snd_u_embeddings = nn.Embedding(
166
167
168
169
170
                self.emb_size, self.emb_dimension, sparse=True
            )
            init.uniform_(
                self.snd_u_embeddings.weight.data, -initrange, initrange
            )
171
            self.snd_v_embeddings = nn.Embedding(
172
173
                self.emb_size, self.emb_dimension, sparse=True
            )
174
175
176
177
            init.constant_(self.snd_v_embeddings.weight.data, 0)

        # lookup_table is used for fast sigmoid computing
        self.lookup_table = torch.sigmoid(torch.arange(-6.01, 6.01, 0.01))
178
179
        self.lookup_table[0] = 0.0
        self.lookup_table[-1] = 1.0
180
        if self.record_loss:
181
182
183
            self.logsigmoid_table = torch.log(
                torch.sigmoid(torch.arange(-6.01, 6.01, 0.01))
            )
184
185
186
187
            self.loss_fst = []
            self.loss_snd = []

        # indexes to select positive/negative node pairs from batch_walks
188
189
190
        self.index_emb_negu, self.index_emb_negv = init_emb2neg_index(
            self.negative, self.batch_size
        )
191
192
193
194
195
196
197
198
199

        # adam
        if self.fst:
            self.fst_state_sum_u = torch.zeros(self.emb_size)
        if self.snd:
            self.snd_state_sum_u = torch.zeros(self.emb_size)
            self.snd_state_sum_v = torch.zeros(self.emb_size)

    def create_async_update(self):
200
        """Set up the async update subprocess."""
201
        self.async_q = Queue(1)
202
203
204
        self.async_p = mp.Process(
            target=async_update, args=(self.num_threads, self, self.async_q)
        )
205
206
207
        self.async_p.start()

    def finish_async_update(self):
208
        """Notify the async update subprocess to quit."""
209
210
211
212
        self.async_q.put((None, None, None, None, None))
        self.async_p.join()

    def share_memory(self):
213
        """share the parameters across subprocesses"""
214
215
216
217
218
219
220
221
222
223
        if self.fst:
            self.fst_u_embeddings.weight.share_memory_()
            self.fst_state_sum_u.share_memory_()
        if self.snd:
            self.snd_u_embeddings.weight.share_memory_()
            self.snd_v_embeddings.weight.share_memory_()
            self.snd_state_sum_u.share_memory_()
            self.snd_state_sum_v.share_memory_()

    def set_device(self, gpu_id):
224
        """set gpu device"""
225
226
227
228
229
230
231
232
233
        self.device = torch.device("cuda:%d" % gpu_id)
        print("The device is", self.device)
        self.lookup_table = self.lookup_table.to(self.device)
        if self.record_loss:
            self.logsigmoid_table = self.logsigmoid_table.to(self.device)
        self.index_emb_negu = self.index_emb_negu.to(self.device)
        self.index_emb_negv = self.index_emb_negv.to(self.device)

    def all_to_device(self, gpu_id):
234
        """move all of the parameters to a single GPU"""
235
236
237
238
239
240
241
242
243
244
245
246
        self.device = torch.device("cuda:%d" % gpu_id)
        self.set_device(gpu_id)
        if self.fst:
            self.fst_u_embeddings = self.fst_u_embeddings.cuda(gpu_id)
            self.fst_state_sum_u = self.fst_state_sum_u.to(self.device)
        if self.snd:
            self.snd_u_embeddings = self.snd_u_embeddings.cuda(gpu_id)
            self.snd_v_embeddings = self.snd_v_embeddings.cuda(gpu_id)
            self.snd_state_sum_u = self.snd_state_sum_u.to(self.device)
            self.snd_state_sum_v = self.snd_state_sum_v.to(self.device)

    def fast_sigmoid(self, score):
247
        """do fast sigmoid by looking up in a pre-defined table"""
248
249
250
251
        idx = torch.floor((score + 6.01) / 0.01).long()
        return self.lookup_table[idx]

    def fast_logsigmoid(self, score):
252
        """do fast logsigmoid by looking up in a pre-defined table"""
253
254
255
256
        idx = torch.floor((score + 6.01) / 0.01).long()
        return self.logsigmoid_table[idx]

    def fast_pos_bp(self, emb_pos_u, emb_pos_v, first_flag):
257
        """get grad for positve samples"""
258
259
260
261
262
263
        pos_score = torch.sum(torch.mul(emb_pos_u, emb_pos_v), dim=1)
        pos_score = torch.clamp(pos_score, max=6, min=-6)
        # [batch_size, 1]
        score = (1 - self.fast_sigmoid(pos_score)).unsqueeze(1)
        if self.record_loss:
            if first_flag:
264
265
266
                self.loss_fst.append(
                    torch.mean(self.fast_logsigmoid(pos_score)).item()
                )
267
            else:
268
269
270
                self.loss_snd.append(
                    torch.mean(self.fast_logsigmoid(pos_score)).item()
                )
271
272
273

        # [batch_size, dim]
        if self.lap_norm > 0:
274
275
276
277
278
279
            grad_u_pos = score * emb_pos_v + self.lap_norm * (
                emb_pos_v - emb_pos_u
            )
            grad_v_pos = score * emb_pos_u + self.lap_norm * (
                emb_pos_u - emb_pos_v
            )
280
281
282
283
284
285
286
        else:
            grad_u_pos = score * emb_pos_v
            grad_v_pos = score * emb_pos_u

        return grad_u_pos, grad_v_pos

    def fast_neg_bp(self, emb_neg_u, emb_neg_v, first_flag):
287
        """get grad for negative samples"""
288
289
290
        neg_score = torch.sum(torch.mul(emb_neg_u, emb_neg_v), dim=1)
        neg_score = torch.clamp(neg_score, max=6, min=-6)
        # [batch_size * negative, 1]
291
        score = -self.fast_sigmoid(neg_score).unsqueeze(1)
292
293
        if self.record_loss:
            if first_flag:
294
295
296
297
298
                self.loss_fst.append(
                    self.negative
                    * self.neg_weight
                    * torch.mean(self.fast_logsigmoid(-neg_score)).item()
                )
299
            else:
300
301
302
303
304
                self.loss_snd.append(
                    self.negative
                    * self.neg_weight
                    * torch.mean(self.fast_logsigmoid(-neg_score)).item()
                )
305
306
307
308
309
310
311

        grad_u_neg = self.neg_weight * score * emb_neg_v
        grad_v_neg = self.neg_weight * score * emb_neg_u

        return grad_u_neg, grad_v_neg

    def fast_learn(self, batch_edges, neg_nodes=None):
312
        """Learn a batch of edges in a fast way. It has the following features:
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
            1. It calculating the gradients directly without the forward operation.
            2. It does sigmoid by a looking up table.

        Specifically, for each positive/negative node pair (i,j), the updating procedure is as following:
            score = self.fast_sigmoid(u_embedding[i].dot(v_embedding[j]))
            # label = 1 for positive samples; label = 0 for negative samples.
            u_embedding[i] += (label - score) * v_embedding[j]
            v_embedding[i] += (label - score) * u_embedding[j]

        Parameters
        ----------
        batch_edges list : a list of node sequnces
        neg_nodes torch.LongTensor : a long tensor of sampled true negative nodes. If neg_nodes is None,
            then do negative sampling randomly from the nodes in batch_walks as an alternative.

        Usage example
        -------------
        batch_walks = torch.LongTensor([[1,2], [3,4], [5,6]])
        neg_nodes = None
        """
        lr = self.lr

        # [batch_size, 2]
        nodes = batch_edges
        if self.only_gpu:
            nodes = nodes.to(self.device)
            if neg_nodes is not None:
                neg_nodes = neg_nodes.to(self.device)
        bs = len(nodes)

        if self.fst:
344
345
346
347
348
349
350
351
352
353
            emb_u = (
                self.fst_u_embeddings(nodes[:, 0])
                .view(-1, self.emb_dimension)
                .to(self.device)
            )
            emb_v = (
                self.fst_u_embeddings(nodes[:, 1])
                .view(-1, self.emb_dimension)
                .to(self.device)
            )
354
355
356

            ## Postive
            emb_pos_u, emb_pos_v = emb_u, emb_v
357
358
359
            grad_u_pos, grad_v_pos = self.fast_pos_bp(
                emb_pos_u, emb_pos_v, True
            )
360
361
362
363
364

            ## Negative
            emb_neg_u = emb_pos_u.repeat((self.negative, 1))

            if bs < self.batch_size:
365
366
367
                index_emb_negu, index_emb_negv = init_emb2neg_index(
                    self.negative, bs
                )
368
369
370
371
372
                index_emb_negu = index_emb_negu.to(self.device)
                index_emb_negv = index_emb_negv.to(self.device)
            else:
                index_emb_negu = self.index_emb_negu
                index_emb_negv = self.index_emb_negv
373

374
375
376
            if neg_nodes is None:
                emb_neg_v = torch.index_select(emb_v, 0, index_emb_negv)
            else:
377
378
379
                emb_neg_v = self.fst_u_embeddings.weight[neg_nodes].to(
                    self.device
                )
380

381
382
383
            grad_u_neg, grad_v_neg = self.fast_neg_bp(
                emb_neg_u, emb_neg_v, True
            )
384
385
386
387
388
389
390
391
392

            ## Update
            grad_u_pos.index_add_(0, index_emb_negu, grad_u_neg)
            grad_u = grad_u_pos
            if neg_nodes is None:
                grad_v_pos.index_add_(0, index_emb_negv, grad_v_neg)
                grad_v = grad_v_pos
            else:
                grad_v = grad_v_pos
393

394
            # use adam optimizer
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
            grad_u = adam(
                grad_u,
                self.fst_state_sum_u,
                nodes[:, 0],
                lr,
                self.device,
                self.only_gpu,
            )
            grad_v = adam(
                grad_v,
                self.fst_state_sum_u,
                nodes[:, 1],
                lr,
                self.device,
                self.only_gpu,
            )
411
            if neg_nodes is not None:
412
413
414
415
416
417
418
419
                grad_v_neg = adam(
                    grad_v_neg,
                    self.fst_state_sum_u,
                    neg_nodes,
                    lr,
                    self.device,
                    self.only_gpu,
                )
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

            if self.mixed_train:
                grad_u = grad_u.cpu()
                grad_v = grad_v.cpu()
                if neg_nodes is not None:
                    grad_v_neg = grad_v_neg.cpu()
                else:
                    grad_v_neg = None

                if self.async_update:
                    grad_u.share_memory_()
                    grad_v.share_memory_()
                    nodes.share_memory_()
                    if neg_nodes is not None:
                        neg_nodes.share_memory_()
                        grad_v_neg.share_memory_()
436
437
438
439
                    self.async_q.put(
                        (grad_u, grad_v, grad_v_neg, nodes, neg_nodes, True)
                    )

440
            if not self.async_update:
441
442
443
444
445
446
                self.fst_u_embeddings.weight.data.index_add_(
                    0, nodes[:, 0], grad_u
                )
                self.fst_u_embeddings.weight.data.index_add_(
                    0, nodes[:, 1], grad_v
                )
447
                if neg_nodes is not None:
448
449
450
                    self.fst_u_embeddings.weight.data.index_add_(
                        0, neg_nodes, grad_v_neg
                    )
451
452

        if self.snd:
453
454
455
456
457
458
459
460
461
462
            emb_u = (
                self.snd_u_embeddings(nodes[:, 0])
                .view(-1, self.emb_dimension)
                .to(self.device)
            )
            emb_v = (
                self.snd_v_embeddings(nodes[:, 1])
                .view(-1, self.emb_dimension)
                .to(self.device)
            )
463
464
465

            ## Postive
            emb_pos_u, emb_pos_v = emb_u, emb_v
466
467
468
            grad_u_pos, grad_v_pos = self.fast_pos_bp(
                emb_pos_u, emb_pos_v, False
            )
469
470
471
472
473

            ## Negative
            emb_neg_u = emb_pos_u.repeat((self.negative, 1))

            if bs < self.batch_size:
474
475
476
                index_emb_negu, index_emb_negv = init_emb2neg_index(
                    self.negative, bs
                )
477
478
479
480
481
482
483
484
485
                index_emb_negu = index_emb_negu.to(self.device)
                index_emb_negv = index_emb_negv.to(self.device)
            else:
                index_emb_negu = self.index_emb_negu
                index_emb_negv = self.index_emb_negv

            if neg_nodes is None:
                emb_neg_v = torch.index_select(emb_v, 0, index_emb_negv)
            else:
486
487
488
                emb_neg_v = self.snd_v_embeddings.weight[neg_nodes].to(
                    self.device
                )
489

490
491
492
            grad_u_neg, grad_v_neg = self.fast_neg_bp(
                emb_neg_u, emb_neg_v, False
            )
493
494
495
496
497
498
499
500
501

            ## Update
            grad_u_pos.index_add_(0, index_emb_negu, grad_u_neg)
            grad_u = grad_u_pos
            if neg_nodes is None:
                grad_v_pos.index_add_(0, index_emb_negv, grad_v_neg)
                grad_v = grad_v_pos
            else:
                grad_v = grad_v_pos
502

503
            # use adam optimizer
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
            grad_u = adam(
                grad_u,
                self.snd_state_sum_u,
                nodes[:, 0],
                lr,
                self.device,
                self.only_gpu,
            )
            grad_v = adam(
                grad_v,
                self.snd_state_sum_v,
                nodes[:, 1],
                lr,
                self.device,
                self.only_gpu,
            )
520
            if neg_nodes is not None:
521
522
523
524
525
526
527
528
                grad_v_neg = adam(
                    grad_v_neg,
                    self.snd_state_sum_v,
                    neg_nodes,
                    lr,
                    self.device,
                    self.only_gpu,
                )
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544

            if self.mixed_train:
                grad_u = grad_u.cpu()
                grad_v = grad_v.cpu()
                if neg_nodes is not None:
                    grad_v_neg = grad_v_neg.cpu()
                else:
                    grad_v_neg = None

                if self.async_update:
                    grad_u.share_memory_()
                    grad_v.share_memory_()
                    nodes.share_memory_()
                    if neg_nodes is not None:
                        neg_nodes.share_memory_()
                        grad_v_neg.share_memory_()
545
546
547
548
                    self.async_q.put(
                        (grad_u, grad_v, grad_v_neg, nodes, neg_nodes, False)
                    )

549
            if not self.async_update:
550
551
552
553
554
555
                self.snd_u_embeddings.weight.data.index_add_(
                    0, nodes[:, 0], grad_u
                )
                self.snd_v_embeddings.weight.data.index_add_(
                    0, nodes[:, 1], grad_v
                )
556
                if neg_nodes is not None:
557
558
559
                    self.snd_v_embeddings.weight.data.index_add_(
                        0, neg_nodes, grad_v_neg
                    )
560
561
562
563
564
565

        return

    def get_embedding(self):
        if self.fst:
            embedding_fst = self.fst_u_embeddings.weight.cpu().data.numpy()
566
567
568
            embedding_fst /= np.sqrt(
                np.sum(embedding_fst * embedding_fst, 1)
            ).reshape(-1, 1)
569
570
        if self.snd:
            embedding_snd = self.snd_u_embeddings.weight.cpu().data.numpy()
571
572
573
            embedding_snd /= np.sqrt(
                np.sum(embedding_snd * embedding_snd, 1)
            ).reshape(-1, 1)
574
575
        if self.fst and self.snd:
            embedding = np.concatenate((embedding_fst, embedding_snd), 1)
576
577
578
            embedding /= np.sqrt(np.sum(embedding * embedding, 1)).reshape(
                -1, 1
            )
579
580
581
582
583
584
        elif self.fst and not self.snd:
            embedding = embedding_fst
        elif self.snd and not self.fst:
            embedding = embedding_snd
        else:
            pass
585

586
587
588
        return embedding

    def save_embedding(self, dataset, file_name):
589
        """Write embedding to local file. Only used when node ids are numbers.
590
591
592
593
594
595
596
597
598
599

        Parameter
        ---------
        dataset DeepwalkDataset : the dataset
        file_name str : the file name
        """
        embedding = self.get_embedding()
        np.save(file_name, embedding)

    def save_embedding_pt(self, dataset, file_name):
600
        """For ogb leaderboard."""
601
602
603
604
605
606
        embedding = torch.Tensor(self.get_embedding()).cpu()
        embedding_empty = torch.zeros_like(embedding.data)
        valid_nodes = torch.LongTensor(dataset.valid_nodes)
        valid_embedding = embedding.data.index_select(0, valid_nodes)
        embedding_empty.index_add_(0, valid_nodes, valid_embedding)

607
        torch.save(embedding_empty, file_name)