reading_data.py 7.37 KB
Newer Older
1
import os
2
3
4
5
import pickle
import random
import time

6
7
8
9
import numpy as np
import scipy.sparse as sp
import torch
from torch.utils.data import DataLoader
10
11
from utils import shuffle_walks

12
import dgl
13
14
15
16
17
18
from dgl.data.utils import (
    _get_dgl_url,
    download,
    extract_archive,
    get_download_dir,
)
19

20
21

def ReadTxtNet(file_path="", undirected=True):
22
    """Read the txt network file.
23
24
25
26
27
28
29
30
31
32
    Notations: The network is unweighted.

    Parameters
    ----------
    file_path str : path of network file
    undirected bool : whether the edges are undirected

    Return
    ------
    net dict : a dict recording the connections in the graph
33
    node2id dict : a dict mapping the nodes to their embedding indices
34
35
    id2node dict : a dict mapping nodes embedding indices to the nodes
    """
36
    if file_path == "youtube" or file_path == "blog":
37
38
        name = file_path
        dir = get_download_dir()
39
40
41
42
43
44
45
46
        zip_file_path = "{}/{}.zip".format(dir, name)
        download(
            _get_dgl_url(
                os.path.join("dataset/DeepWalk/", "{}.zip".format(file_path))
            ),
            path=zip_file_path,
        )
        extract_archive(zip_file_path, "{}/{}".format(dir, name))
47
48
49
50
51
52
53
54
55
56
57
58
59
        file_path = "{}/{}/{}-net.txt".format(dir, name, name)

    node2id = {}
    id2node = {}
    cid = 0

    src = []
    dst = []
    weight = []
    net = {}
    with open(file_path, "r") as f:
        for line in f.readlines():
            tup = list(map(int, line.strip().split(" ")))
60
61
62
63
            assert len(tup) in [
                2,
                3,
            ], "The format of network file is unrecognizable."
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
            if len(tup) == 3:
                n1, n2, w = tup
            elif len(tup) == 2:
                n1, n2 = tup
                w = 1
            if n1 not in node2id:
                node2id[n1] = cid
                id2node[cid] = n1
                cid += 1
            if n2 not in node2id:
                node2id[n2] = cid
                id2node[cid] = n2
                cid += 1

            n1 = node2id[n1]
            n2 = node2id[n2]
            if n1 not in net:
                net[n1] = {n2: w}
                src.append(n1)
                dst.append(n2)
                weight.append(w)
            elif n2 not in net[n1]:
                net[n1][n2] = w
                src.append(n1)
                dst.append(n2)
                weight.append(w)
90

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
            if undirected:
                if n2 not in net:
                    net[n2] = {n1: w}
                    src.append(n2)
                    dst.append(n1)
                    weight.append(w)
                elif n1 not in net[n2]:
                    net[n2][n1] = w
                    src.append(n2)
                    dst.append(n1)
                    weight.append(w)

    print("node num: %d" % len(net))
    print("edge num: %d" % len(src))
    assert max(net.keys()) == len(net) - 1, "error reading net, quit"

107
    sm = sp.coo_matrix((np.array(weight), (src, dst)), dtype=np.float32)
108
109
110

    return net, node2id, id2node, sm

111

112
def net2graph(net_sm):
113
    """Transform the network to DGL graph
114

115
    Return
116
117
118
119
120
121
122
123
124
125
    ------
    G DGLGraph : graph by DGL
    """
    start = time.time()
    G = dgl.DGLGraph(net_sm)
    end = time.time()
    t = end - start
    print("Building DGLGraph in %.2fs" % t)
    return G

126

127
def make_undirected(G):
128
    # G.readonly(False)
129
130
131
    G.add_edges(G.edges()[1], G.edges()[0])
    return G

132

133
def find_connected_nodes(G):
134
    nodes = G.out_degrees().nonzero().squeeze(-1)
135
136
    return nodes

137

138
class DeepwalkDataset:
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    def __init__(
        self,
        net_file,
        map_file,
        walk_length,
        window_size,
        num_walks,
        batch_size,
        negative=5,
        gpus=[0],
        fast_neg=True,
        ogbl_name="",
        load_from_ogbl=False,
    ):
        """This class has the following functions:
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
        1. Transform the txt network file into DGL graph;
        2. Generate random walk sequences for the trainer;
        3. Provide the negative table if the user hopes to sample negative
        nodes according to nodes' degrees;

        Parameter
        ---------
        net_file str : path of the txt network file
        walk_length int : number of nodes in a sequence
        window_size int : context window size
        num_walks int : number of walks for each node
        batch_size int : number of node sequences in each batch
        negative int : negative samples for each positve node pair
        fast_neg bool : whether do negative sampling inside a batch
        """
        self.walk_length = walk_length
        self.window_size = window_size
        self.num_walks = num_walks
        self.batch_size = batch_size
        self.negative = negative
        self.num_procs = len(gpus)
        self.fast_neg = fast_neg
176
177

        if load_from_ogbl:
178
179
180
            assert (
                len(gpus) == 1
            ), "ogb.linkproppred is not compatible with multi-gpu training (CUDA error)."
181
            from load_dataset import load_from_ogbl_with_name
182

183
184
185
186
187
188
189
190
            self.G = load_from_ogbl_with_name(ogbl_name)
            self.G = make_undirected(self.G)
        else:
            self.net, self.node2id, self.id2node, self.sm = ReadTxtNet(net_file)
            self.save_mapping(map_file)
            self.G = net2graph(self.sm)

        self.num_nodes = self.G.number_of_nodes()
191
192
193

        # random walk seeds
        start = time.time()
194
195
        self.valid_seeds = find_connected_nodes(self.G)
        if len(self.valid_seeds) != self.num_nodes:
196
197
198
199
            print(
                "WARNING: The node ids are not serial. Some nodes are invalid."
            )

200
        seeds = torch.cat([torch.LongTensor(self.valid_seeds)] * num_walks)
201
202
203
204
205
206
207
        self.seeds = torch.split(
            shuffle_walks(seeds),
            int(
                np.ceil(len(self.valid_seeds) * self.num_walks / self.num_procs)
            ),
            0,
        )
208
209
210
211
212
213
        end = time.time()
        t = end - start
        print("%d seeds in %.2fs" % (len(seeds), t))

        # negative table for true negative sampling
        if not fast_neg:
214
            node_degree = self.G.out_degrees(self.valid_seeds).numpy()
215
216
217
218
            node_degree = np.power(node_degree, 0.75)
            node_degree /= np.sum(node_degree)
            node_degree = np.array(node_degree * 1e8, dtype=np.int)
            self.neg_table = []
219

220
            for idx, node in enumerate(self.valid_seeds):
221
222
223
224
225
                self.neg_table += [node] * node_degree[idx]
            self.neg_table_size = len(self.neg_table)
            self.neg_table = np.array(self.neg_table, dtype=np.long)
            del node_degree

226
    def create_sampler(self, i):
227
        """create random walk sampler"""
228
        return DeepwalkSampler(self.G, self.seeds[i], self.walk_length)
229
230

    def save_mapping(self, map_file):
231
        """save the mapping dict that maps node IDs to embedding indices"""
232
233
234
        with open(map_file, "wb") as f:
            pickle.dump(self.node2id, f)

235

236
237
class DeepwalkSampler(object):
    def __init__(self, G, seeds, walk_length):
238
239
        """random walk sampler

240
241
242
243
244
245
        Parameter
        ---------
        G dgl.Graph : the input graph
        seeds torch.LongTensor : starting nodes
        walk_length int : walk length
        """
246
247
248
        self.G = G
        self.seeds = seeds
        self.walk_length = walk_length
249

250
    def sample(self, seeds):
251
252
253
        walks = dgl.sampling.random_walk(
            self.G, seeds, length=self.walk_length - 1
        )[0]
254
        return walks