main.py 9.84 KB
Newer Older
1
2
3
4
5
import argparse
import time
import traceback
from functools import partial

6
7
import numpy as np
import torch as th
8
import torch.multiprocessing as mp
9
10
11
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
12
13
14
import tqdm
from ogb.nodeproppred import DglNodePropPredDataset
from sampler import ClusterIter, subgraph_collate_fn
15
from torch.utils.data import DataLoader
16
17

import dgl
18
19
20
21
22
23
import dgl.function as fn
import dgl.nn.pytorch as dglnn
from dgl.data import RedditDataset

#### Neighbor sampler

24

25
class SAGE(nn.Module):
26
27
28
    def __init__(
        self, in_feats, n_hidden, n_classes, n_layers, activation, dropout
    ):
29
30
31
32
33
        super().__init__()
        self.n_layers = n_layers
        self.n_hidden = n_hidden
        self.n_classes = n_classes
        self.layers = nn.ModuleList()
34
        self.layers.append(dglnn.SAGEConv(in_feats, n_hidden, "mean"))
35
        for i in range(1, n_layers - 1):
36
37
            self.layers.append(dglnn.SAGEConv(n_hidden, n_hidden, "mean"))
        self.layers.append(dglnn.SAGEConv(n_hidden, n_classes, "mean"))
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
        self.dropout = nn.Dropout(dropout)
        self.activation = activation

    def forward(self, g, x):
        h = x
        for l, conv in enumerate(self.layers):
            h = conv(g, h)
            if l != len(self.layers) - 1:
                h = self.activation(h)
                h = self.dropout(h)
        return h

    def inference(self, g, x, batch_size, device):
        """
        Inference with the GraphSAGE model on full neighbors (i.e. without neighbor sampling).
        g : the entire graph.
        x : the input of entire node set.
        The inference code is written in a fashion that it could handle any number of nodes and
        layers.
        """
        # During inference with sampling, multi-layer blocks are very inefficient because
        # lots of computations in the first few layers are repeated.
        # Therefore, we compute the representation of all nodes layer by layer.  The nodes
        # on each layer are of course splitted in batches.
        # TODO: can we standardize this?
        h = x
        for l, conv in enumerate(self.layers):
            h = conv(g, h)
            if l != len(self.layers) - 1:
                h = self.activation(h)

        return h

71

72
73
74
75
76
77
def compute_acc(pred, labels):
    """
    Compute the accuracy of prediction given the labels.
    """
    return (th.argmax(pred, dim=1) == labels).float().sum() / len(pred)

78

79
80
81
82
83
84
85
86
87
88
89
90
def evaluate(model, g, labels, val_nid, test_nid, batch_size, device):
    """
    Evaluate the model on the validation set specified by ``val_mask``.
    g : The entire graph.
    inputs : The features of all the nodes.
    labels : The labels of all the nodes.
    val_mask : A 0-1 mask indicating which nodes do we actually compute the accuracy for.
    batch_size : Number of nodes to compute at the same time.
    device : The GPU device to evaluate on.
    """
    model.eval()
    with th.no_grad():
91
        inputs = g.ndata["feat"]
92
93
94
        model = model.cpu()
        pred = model.inference(g, inputs, batch_size, device)
    model.train()
95
96
97
98
99
100
    return (
        compute_acc(pred[val_nid], labels[val_nid]),
        compute_acc(pred[test_nid], labels[test_nid]),
        pred,
    )

101
102
103
104
105

def load_subtensor(g, labels, seeds, input_nodes, device):
    """
    Copys features and labels of a set of nodes onto GPU.
    """
106
    batch_inputs = g.ndata["feat"][input_nodes].to(device)
107
108
109
    batch_labels = labels[seeds].to(device)
    return batch_inputs, batch_labels

110

111
112
113
#### Entry point
def run(args, device, data):
    # Unpack data
114
115
116
117
118
119
120
121
122
123
    (
        train_nid,
        val_nid,
        test_nid,
        in_feats,
        labels,
        n_classes,
        g,
        cluster_iterator,
    ) = data
124
125

    # Define model and optimizer
126
127
128
129
130
131
132
133
    model = SAGE(
        in_feats,
        args.num_hidden,
        n_classes,
        args.num_layers,
        F.relu,
        args.dropout,
    )
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    model = model.to(device)
    loss_fcn = nn.CrossEntropyLoss()
    loss_fcn = loss_fcn.to(device)
    optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wd)

    # Training loop
    avg = 0
    iter_tput = []
    best_eval_acc = 0
    best_test_acc = 0
    for epoch in range(args.num_epochs):
        iter_load = 0
        iter_far = 0
        iter_back = 0
        iter_tl = 0
        tic = time.time()

        # Loop over the dataloader to sample the computation dependency graph as a list of
        # blocks.
        tic_start = time.time()
        for step, cluster in enumerate(cluster_iterator):
155
            cluster = cluster.int().to(device)
156
            mask = cluster.ndata["train_mask"].to(device)
157
158
            if mask.sum() == 0:
                continue
159
160
            feat = cluster.ndata["feat"].to(device)
            batch_labels = cluster.ndata["labels"].to(device)
161
162
163
164
165
166
167
168
169
170
171
            tic_step = time.time()

            batch_pred = model(cluster, feat)
            batch_pred = batch_pred[mask]
            batch_labels = batch_labels[mask]
            loss = loss_fcn(batch_pred, batch_labels)
            optimizer.zero_grad()
            tic_far = time.time()
            loss.backward()
            optimizer.step()
            tic_back = time.time()
172
173
174
            iter_load += tic_step - tic_start
            iter_far += tic_far - tic_step
            iter_back += tic_back - tic_far
175
176
177
178

            tic_start = time.time()
            if step % args.log_every == 0:
                acc = compute_acc(batch_pred, batch_labels)
179
180
181
182
183
184
185
186
187
188
                gpu_mem_alloc = (
                    th.cuda.max_memory_allocated() / 1000000
                    if th.cuda.is_available()
                    else 0
                )
                print(
                    "Epoch {:05d} | Step {:05d} | Loss {:.4f} | Train Acc {:.4f} | GPU {:.1f} MB".format(
                        epoch, step, loss.item(), acc.item(), gpu_mem_alloc
                    )
                )
189
190

        toc = time.time()
191
192
193
194
195
        print(
            "Epoch Time(s): {:.4f} Load {:.4f} Forward {:.4f} Backward {:.4f}".format(
                toc - tic, iter_load, iter_far, iter_back
            )
        )
196
197
198
199
        if epoch >= 5:
            avg += toc - tic

        if epoch % args.eval_every == 0 and epoch != 0:
200
201
202
            eval_acc, test_acc, pred = evaluate(
                model, g, labels, val_nid, test_nid, args.val_batch_size, device
            )
203
204
            model = model.to(device)
            if args.save_pred:
205
206
207
208
209
210
                np.savetxt(
                    args.save_pred + "%02d" % epoch,
                    pred.argmax(1).cpu().numpy(),
                    "%d",
                )
            print("Eval Acc {:.4f}".format(eval_acc))
211
212
213
            if eval_acc > best_eval_acc:
                best_eval_acc = eval_acc
                best_test_acc = test_acc
214
215
216
217
218
219
            print(
                "Best Eval Acc {:.4f} Test Acc {:.4f}".format(
                    best_eval_acc, best_test_acc
                )
            )
    print("Avg epoch time: {}".format(avg / (epoch - 4)))
220
221
    return best_test_acc

222
223

if __name__ == "__main__":
224
    argparser = argparse.ArgumentParser("multi-gpu training")
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    argparser.add_argument(
        "--gpu",
        type=int,
        default=0,
        help="GPU device ID. Use -1 for CPU training",
    )
    argparser.add_argument("--num-epochs", type=int, default=30)
    argparser.add_argument("--num-hidden", type=int, default=256)
    argparser.add_argument("--num-layers", type=int, default=3)
    argparser.add_argument("--batch-size", type=int, default=32)
    argparser.add_argument("--val-batch-size", type=int, default=10000)
    argparser.add_argument("--log-every", type=int, default=20)
    argparser.add_argument("--eval-every", type=int, default=1)
    argparser.add_argument("--lr", type=float, default=0.001)
    argparser.add_argument("--dropout", type=float, default=0.5)
    argparser.add_argument("--save-pred", type=str, default="")
    argparser.add_argument("--wd", type=float, default=0)
    argparser.add_argument("--num_partitions", type=int, default=15000)
243
    args = argparser.parse_args()
244

245
    if args.gpu >= 0:
246
        device = th.device("cuda:%d" % args.gpu)
247
    else:
248
        device = th.device("cpu")
249

250
    # load ogbn-products data
251
    data = DglNodePropPredDataset(name="ogbn-products")
252
    splitted_idx = data.get_idx_split()
253
254
255
256
257
    train_idx, val_idx, test_idx = (
        splitted_idx["train"],
        splitted_idx["valid"],
        splitted_idx["test"],
    )
258
259
260
261
    graph, labels = data[0]
    labels = labels[:, 0]
    num_nodes = train_idx.shape[0] + val_idx.shape[0] + test_idx.shape[0]
    assert num_nodes == graph.number_of_nodes()
262
    graph.ndata["labels"] = labels
263
264
    mask = th.zeros(num_nodes, dtype=th.bool)
    mask[train_idx] = True
265
    graph.ndata["train_mask"] = mask
266
267
    mask = th.zeros(num_nodes, dtype=th.bool)
    mask[val_idx] = True
268
    graph.ndata["valid_mask"] = mask
269
270
    mask = th.zeros(num_nodes, dtype=th.bool)
    mask[test_idx] = True
271
    graph.ndata["test_mask"] = mask
272
273
274
275
276
277

    graph.in_degree(0)
    graph.out_degree(0)
    graph.find_edges(0)

    cluster_iter_data = ClusterIter(
278
279
280
281
282
283
        "ogbn-products",
        graph,
        args.num_partitions,
        args.batch_size,
        th.cat([train_idx, val_idx, test_idx]),
    )
284
    idx = th.arange(args.num_partitions // args.batch_size)
285
286
287
288
289
290
291
292
    cluster_iterator = DataLoader(
        cluster_iter_data,
        batch_size=32,
        shuffle=True,
        pin_memory=True,
        num_workers=4,
        collate_fn=partial(subgraph_collate_fn, graph),
    )
293

294
    in_feats = graph.ndata["feat"].shape[1]
295
296
297
    print(in_feats)
    n_classes = (labels.max() + 1).item()
    # Pack data
298
299
300
301
302
303
304
305
306
307
    data = (
        train_idx,
        val_idx,
        test_idx,
        in_feats,
        labels,
        n_classes,
        graph,
        cluster_iterator,
    )
308
309
310
311
312

    # Run 10 times
    test_accs = []
    for i in range(10):
        test_accs.append(run(args, device, data))
313
314
315
        print(
            "Average test accuracy:", np.mean(test_accs), "±", np.std(test_accs)
        )