main.py 11 KB
Newer Older
1
2
3
""" The main file to train a MixHop model using a full graph """

import argparse
xnouhz's avatar
xnouhz committed
4
import copy
5
6
7
import random

import numpy as np
8
9
import torch
import torch.nn as nn
10
11
12
import torch.optim as optim
from tqdm import trange

13
14
import dgl
import dgl.function as fn
15
from dgl.data import CiteseerGraphDataset, CoraGraphDataset, PubmedGraphDataset
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48


class MixHopConv(nn.Module):
    r"""

    Description
    -----------
    MixHop Graph Convolutional layer from paper `MixHop: Higher-Order Graph Convolutional Architecturesvia Sparsified Neighborhood Mixing
     <https://arxiv.org/pdf/1905.00067.pdf>`__.

    .. math::
        H^{(i+1)} =\underset{j \in P}{\Bigg\Vert} \sigma\left(\widehat{A}^j H^{(i)} W_j^{(i)}\right),

    where :math:`\widehat{A}` denotes the symmetrically normalized adjacencymatrix with self-connections,
    :math:`D_{ii} = \sum_{j=0} \widehat{A}_{ij}` its diagonal degree matrix,
    :math:`W_j^{(i)}` denotes the trainable weight matrix of different MixHop layers.

    Parameters
    ----------
    in_dim : int
        Input feature size. i.e, the number of dimensions of :math:`H^{(i)}`.
    out_dim : int
        Output feature size for each power.
    p: list
        List of powers of adjacency matrix. Defaults: ``[0, 1, 2]``.
    dropout: float, optional
        Dropout rate on node features. Defaults: ``0``.
    activation: callable activation function/layer or None, optional
        If not None, applies an activation function to the updated node features.
        Default: ``None``.
    batchnorm: bool, optional
        If True, use batch normalization. Defaults: ``False``.
    """
49
50
51
52
53
54
55
56
57
58

    def __init__(
        self,
        in_dim,
        out_dim,
        p=[0, 1, 2],
        dropout=0,
        activation=None,
        batchnorm=False,
    ):
59
60
61
62
63
64
65
66
67
68
69
70
71
        super(MixHopConv, self).__init__()
        self.in_dim = in_dim
        self.out_dim = out_dim
        self.p = p
        self.activation = activation
        self.batchnorm = batchnorm

        # define dropout layer
        self.dropout = nn.Dropout(dropout)

        # define batch norm layer
        if self.batchnorm:
            self.bn = nn.BatchNorm1d(out_dim * len(p))
72

73
        # define weight dict for each power j
74
75
76
        self.weights = nn.ModuleDict(
            {str(j): nn.Linear(in_dim, out_dim, bias=False) for j in p}
        )
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

    def forward(self, graph, feats):
        with graph.local_scope():
            # assume that the graphs are undirected and graph.in_degrees() is the same as graph.out_degrees()
            degs = graph.in_degrees().float().clamp(min=1)
            norm = torch.pow(degs, -0.5).to(feats.device).unsqueeze(1)
            max_j = max(self.p) + 1
            outputs = []
            for j in range(max_j):

                if j in self.p:
                    output = self.weights[str(j)](feats)
                    outputs.append(output)

                feats = feats * norm
92
93
94
                graph.ndata["h"] = feats
                graph.update_all(fn.copy_u("h", "m"), fn.sum("m", "h"))
                feats = graph.ndata.pop("h")
95
                feats = feats * norm
96

97
            final = torch.cat(outputs, dim=1)
98

99
100
            if self.batchnorm:
                final = self.bn(final)
101

102
103
            if self.activation is not None:
                final = self.activation(final)
104

105
106
107
108
            final = self.dropout(final)

            return final

109

110
class MixHop(nn.Module):
111
112
113
114
115
116
117
118
119
120
121
122
    def __init__(
        self,
        in_dim,
        hid_dim,
        out_dim,
        num_layers=2,
        p=[0, 1, 2],
        input_dropout=0.0,
        layer_dropout=0.0,
        activation=None,
        batchnorm=False,
    ):
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        super(MixHop, self).__init__()
        self.in_dim = in_dim
        self.hid_dim = hid_dim
        self.out_dim = out_dim
        self.num_layers = num_layers
        self.p = p
        self.input_dropout = input_dropout
        self.layer_dropout = layer_dropout
        self.activation = activation
        self.batchnorm = batchnorm

        self.layers = nn.ModuleList()
        self.dropout = nn.Dropout(self.input_dropout)

        # Input layer
138
139
140
141
142
143
144
145
146
147
148
        self.layers.append(
            MixHopConv(
                self.in_dim,
                self.hid_dim,
                p=self.p,
                dropout=self.input_dropout,
                activation=self.activation,
                batchnorm=self.batchnorm,
            )
        )

149
150
        # Hidden layers with n - 1 MixHopConv layers
        for i in range(self.num_layers - 2):
151
152
153
154
155
156
157
158
159
160
161
162
163
164
            self.layers.append(
                MixHopConv(
                    self.hid_dim * len(args.p),
                    self.hid_dim,
                    p=self.p,
                    dropout=self.layer_dropout,
                    activation=self.activation,
                    batchnorm=self.batchnorm,
                )
            )

        self.fc_layers = nn.Linear(
            self.hid_dim * len(args.p), self.out_dim, bias=False
        )
165
166
167
168
169

    def forward(self, graph, feats):
        feats = self.dropout(feats)
        for layer in self.layers:
            feats = layer(graph, feats)
170

171
172
173
174
        feats = self.fc_layers(feats)

        return feats

175

176
177
178
def main(args):
    # Step 1: Prepare graph data and retrieve train/validation/test index ============================= #
    # Load from DGL dataset
179
    if args.dataset == "Cora":
180
        dataset = CoraGraphDataset()
181
    elif args.dataset == "Citeseer":
182
        dataset = CiteseerGraphDataset()
183
    elif args.dataset == "Pubmed":
184
185
        dataset = PubmedGraphDataset()
    else:
186
187
        raise ValueError("Dataset {} is invalid.".format(args.dataset))

188
189
190
191
192
    graph = dataset[0]
    graph = dgl.add_self_loop(graph)

    # check cuda
    if args.gpu >= 0 and torch.cuda.is_available():
193
        device = "cuda:{}".format(args.gpu)
194
    else:
195
        device = "cpu"
196
197
198
199
200

    # retrieve the number of classes
    n_classes = dataset.num_classes

    # retrieve labels of ground truth
201
    labels = graph.ndata.pop("label").to(device).long()
202
203

    # Extract node features
204
    feats = graph.ndata.pop("feat").to(device)
205
206
207
    n_features = feats.shape[-1]

    # retrieve masks for train/validation/test
208
209
210
    train_mask = graph.ndata.pop("train_mask")
    val_mask = graph.ndata.pop("val_mask")
    test_mask = graph.ndata.pop("test_mask")
211
212
213
214
215
216
217
218

    train_idx = torch.nonzero(train_mask, as_tuple=False).squeeze().to(device)
    val_idx = torch.nonzero(val_mask, as_tuple=False).squeeze().to(device)
    test_idx = torch.nonzero(test_mask, as_tuple=False).squeeze().to(device)

    graph = graph.to(device)

    # Step 2: Create model =================================================================== #
219
220
221
222
223
224
225
226
227
228
229
230
    model = MixHop(
        in_dim=n_features,
        hid_dim=args.hid_dim,
        out_dim=n_classes,
        num_layers=args.num_layers,
        p=args.p,
        input_dropout=args.input_dropout,
        layer_dropout=args.layer_dropout,
        activation=torch.tanh,
        batchnorm=True,
    )

231
    model = model.to(device)
xnouhz's avatar
xnouhz committed
232
    best_model = copy.deepcopy(model)
233
234
235
236
237
238
239
240
241

    # Step 3: Create training components ===================================================== #
    loss_fn = nn.CrossEntropyLoss()
    opt = optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.lamb)
    scheduler = optim.lr_scheduler.StepLR(opt, args.step_size, gamma=args.gamma)

    # Step 4: training epoches =============================================================== #
    acc = 0
    no_improvement = 0
242
    epochs = trange(args.epochs, desc="Accuracy & Loss")
243
244
245
246
247
248
249
250
251

    for _ in epochs:
        # Training using a full graph
        model.train()

        logits = model(graph, feats)

        # compute loss
        train_loss = loss_fn(logits[train_idx], labels[train_idx])
252
253
254
        train_acc = torch.sum(
            logits[train_idx].argmax(dim=1) == labels[train_idx]
        ).item() / len(train_idx)
255
256
257
258
259
260
261
262
263
264
265

        # backward
        opt.zero_grad()
        train_loss.backward()
        opt.step()

        # Validation using a full graph
        model.eval()

        with torch.no_grad():
            valid_loss = loss_fn(logits[val_idx], labels[val_idx])
266
267
268
            valid_acc = torch.sum(
                logits[val_idx].argmax(dim=1) == labels[val_idx]
            ).item() / len(val_idx)
269
270

        # Print out performance
271
272
273
274
275
276
        epochs.set_description(
            "Train Acc {:.4f} | Train Loss {:.4f} | Val Acc {:.4f} | Val loss {:.4f}".format(
                train_acc, train_loss.item(), valid_acc, valid_loss.item()
            )
        )

277
278
279
        if valid_acc < acc:
            no_improvement += 1
            if no_improvement == args.early_stopping:
280
                print("Early stop.")
281
282
283
284
                break
        else:
            no_improvement = 0
            acc = valid_acc
xnouhz's avatar
xnouhz committed
285
            best_model = copy.deepcopy(model)
286

287
288
        scheduler.step()

xnouhz's avatar
xnouhz committed
289
290
    best_model.eval()
    logits = best_model(graph, feats)
291
292
293
    test_acc = torch.sum(
        logits[test_idx].argmax(dim=1) == labels[test_idx]
    ).item() / len(test_idx)
294
295
296
297

    print("Test Acc {:.4f}".format(test_acc))
    return test_acc

298

299
300
301
302
if __name__ == "__main__":
    """
    MixHop Model Hyperparameters
    """
303
    parser = argparse.ArgumentParser(description="MixHop GCN")
304
305

    # data source params
306
307
308
    parser.add_argument(
        "--dataset", type=str, default="Cora", help="Name of dataset."
    )
309
    # cuda params
310
311
312
    parser.add_argument(
        "--gpu", type=int, default=-1, help="GPU index. Default: -1, using CPU."
    )
313
    # training params
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    parser.add_argument(
        "--epochs", type=int, default=2000, help="Training epochs."
    )
    parser.add_argument(
        "--early-stopping",
        type=int,
        default=200,
        help="Patient epochs to wait before early stopping.",
    )
    parser.add_argument("--lr", type=float, default=0.5, help="Learning rate.")
    parser.add_argument("--lamb", type=float, default=5e-4, help="L2 reg.")
    parser.add_argument(
        "--step-size",
        type=int,
        default=40,
        help="Period of learning rate decay.",
    )
    parser.add_argument(
        "--gamma",
        type=float,
        default=0.01,
        help="Multiplicative factor of learning rate decay.",
    )
337
    # model params
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
    parser.add_argument(
        "--hid-dim", type=int, default=60, help="Hidden layer dimensionalities."
    )
    parser.add_argument(
        "--num-layers", type=int, default=4, help="Number of GNN layers."
    )
    parser.add_argument(
        "--input-dropout",
        type=float,
        default=0.7,
        help="Dropout applied at input layer.",
    )
    parser.add_argument(
        "--layer-dropout",
        type=float,
        default=0.9,
        help="Dropout applied at hidden layers.",
    )
    parser.add_argument(
        "--p", nargs="+", type=int, help="List of powers of adjacency matrix."
    )
359
360
361
362
363
364
365
366
367
368

    parser.set_defaults(p=[0, 1, 2])

    args = parser.parse_args()
    print(args)

    acc_lists = []

    for _ in range(100):
        acc_lists.append(main(args))
369

370
371
372
373
374
    acc_lists.sort()
    acc_lists_top = np.array(acc_lists[50:])

    mean = np.around(np.mean(acc_lists_top, axis=0), decimals=3)
    std = np.around(np.std(acc_lists_top, axis=0), decimals=3)
375
376
377
378
    print("Total acc: ", acc_lists)
    print("Top 50 acc:", acc_lists_top)
    print("mean", mean)
    print("std", std)