gcn.py 4.28 KB
Newer Older
Minjie Wang's avatar
Minjie Wang committed
1
2
3
4
5
6
7
8
9
10
11
12
"""
Semi-Supervised Classification with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1609.02907
Code: https://github.com/tkipf/gcn
"""
import argparse
import numpy as np
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl import DGLGraph
13
from dgl.data import register_data_args, load_data
Minjie Wang's avatar
Minjie Wang committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

def gcn_msg(src, edge):
    return src['h']

def gcn_reduce(node, msgs):
    return sum(msgs)

class NodeUpdateModule(nn.Module):
    def __init__(self, in_feats, out_feats, activation=None):
        super(NodeUpdateModule, self).__init__()
        self.linear = nn.Linear(in_feats, out_feats)
        self.activation = activation

    def forward(self, node, accum):
        h = self.linear(accum)
        if self.activation:
            h = self.activation(h)
        return {'h' : h}

class GCN(nn.Module):
    def __init__(self,
                 nx_graph,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout):
        super(GCN, self).__init__()
        self.g = DGLGraph(nx_graph)
        self.dropout = dropout
        # input layer
        self.layers = nn.ModuleList([NodeUpdateModule(in_feats, n_hidden, activation)])
        # hidden layers
        for i in range(n_layers - 1):
            self.layers.append(NodeUpdateModule(n_hidden, n_hidden, activation))
        # output layer
        self.layers.append(NodeUpdateModule(n_hidden, n_classes))

    def forward(self, features, train_nodes):
        for n, feat in features.items():
            self.g.nodes[n]['h'] = feat
        for layer in self.layers:
            # apply dropout
            if self.dropout:
                self.g.nodes[n]['h'] = F.dropout(g.nodes[n]['h'], p=self.dropout)
            self.g.update_all(gcn_msg, gcn_reduce, layer)
61
        return torch.cat([torch.unsqueeze(self.g.nodes[n]['h'], 0) for n in train_nodes])
Minjie Wang's avatar
Minjie Wang committed
62
63
64

def main(args):
    # load and preprocess dataset
65
    data = load_data(args)
Minjie Wang's avatar
Minjie Wang committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

    # features of each samples
    features = {}
    labels = []
    train_nodes = []
    for n in data.graph.nodes():
        features[n] = torch.FloatTensor(data.features[n, :])
        if data.train_mask[n] == 1:
            train_nodes.append(n)
            labels.append(data.labels[n])
    labels = torch.LongTensor(labels)
    in_feats = data.features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()

    if args.gpu < 0:
        cuda = False
    else:
        cuda = True
        torch.cuda.set_device(args.gpu)
86
        features = {k : v.cuda() for k, v in features.items()}
Minjie Wang's avatar
Minjie Wang committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        labels = labels.cuda()

    # create GCN model
    model = GCN(data.graph,
                in_feats,
                args.n_hidden,
                n_classes,
                args.n_layers,
                F.relu,
                args.dropout)

    if cuda:
        model.cuda()

    # use optimizer
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        if epoch >= 3:
            t0 = time.time()
        # forward
        logits = model(features, train_nodes)
        logp = F.log_softmax(logits, 1)
        loss = F.nll_loss(logp, labels)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if epoch >= 3:
            dur.append(time.time() - t0)

        print("Epoch {:05d} | Loss {:.4f} | Time(s) {:.4f} | ETputs(KTEPS) {:.2f}".format(
            epoch, loss.item(), np.mean(dur), n_edges / np.mean(dur) / 1000))

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GCN')
126
    register_data_args(parser)
Minjie Wang's avatar
Minjie Wang committed
127
128
129
130
131
132
    parser.add_argument("--dropout", type=float, default=0,
            help="dropout probability")
    parser.add_argument("--gpu", type=int, default=-1,
            help="gpu")
    parser.add_argument("--lr", type=float, default=1e-3,
            help="learning rate")
133
    parser.add_argument("--n-epochs", type=int, default=10,
Minjie Wang's avatar
Minjie Wang committed
134
135
136
137
138
139
140
141
142
            help="number of training epochs")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden gcn units")
    parser.add_argument("--n-layers", type=int, default=1,
            help="number of hidden gcn layers")
    args = parser.parse_args()
    print(args)

    main(args)