test_sparse_matrix.py 11.5 KB
Newer Older
1
2
3
4
import pytest
import torch
import sys

5
6
import backend as F

7
8
9
10
11
12
from dgl.mock_sparse2 import create_from_coo, create_from_csr, create_from_csc

# FIXME: Skipping tests on win.
if not sys.platform.startswith("linux"):
    pytest.skip("skipping tests on win", allow_module_level=True)

13

14
@pytest.mark.parametrize("dense_dim", [None, 4])
15
@pytest.mark.parametrize("row", [(0, 0, 1, 2), (0, 1, 2, 4)])
16
@pytest.mark.parametrize("col", [(0, 1, 2, 2), (1, 3, 3, 4)])
17
@pytest.mark.parametrize("shape", [None, (5, 5), (5, 6)])
18
19
20
21
def test_create_from_coo(dense_dim, row, col, shape):
    val_shape = (len(row),)
    if dense_dim is not None:
        val_shape += (dense_dim,)
22
23
24
25
    ctx = F.ctx()
    val = torch.randn(val_shape).to(ctx)
    row = torch.tensor(row).to(ctx)
    col = torch.tensor(col).to(ctx)
26
27
28
29
    mat = create_from_coo(row, col, val, shape)

    if shape is None:
        shape = (torch.max(row).item() + 1, torch.max(col).item() + 1)
30

31
32
    mat_row, mat_col = mat.coo()
    mat_val = mat.val
33
34
35
36
37
38
39
40
41
42

    assert mat.shape == shape
    assert mat.nnz == row.numel()
    assert mat.dtype == val.dtype
    assert torch.allclose(mat_val, val)
    assert torch.allclose(mat_row, row)
    assert torch.allclose(mat_col, col)


@pytest.mark.parametrize("dense_dim", [None, 4])
43
@pytest.mark.parametrize("indptr", [(0, 0, 1, 4), (0, 1, 2, 4)])
44
45
46
47
48
49
@pytest.mark.parametrize("indices", [(0, 1, 2, 3), (1, 2, 3, 4)])
@pytest.mark.parametrize("shape", [None, (3, 5)])
def test_create_from_csr(dense_dim, indptr, indices, shape):
    val_shape = (len(indices),)
    if dense_dim is not None:
        val_shape += (dense_dim,)
50
51
52
53
    ctx = F.ctx()
    val = torch.randn(val_shape).to(ctx)
    indptr = torch.tensor(indptr).to(ctx)
    indices = torch.tensor(indices).to(ctx)
54
55
56
57
58
59
60
61
62
    mat = create_from_csr(indptr, indices, val, shape)

    if shape is None:
        shape = (indptr.numel() - 1, torch.max(indices).item() + 1)

    assert mat.device == val.device
    assert mat.shape == shape
    assert mat.nnz == indices.numel()
    assert mat.dtype == val.dtype
63
64
    mat_indptr, mat_indices, value_indices = mat.csr()
    mat_val = mat.val if value_indices is None else mat.val[value_indices]
65
66
67
68
    assert torch.allclose(mat_indptr, indptr)
    assert torch.allclose(mat_indices, indices)
    assert torch.allclose(mat_val, val)

69

70
@pytest.mark.parametrize("dense_dim", [None, 4])
71
@pytest.mark.parametrize("indptr", [(0, 0, 1, 4), (0, 1, 2, 4)])
72
73
74
75
76
77
@pytest.mark.parametrize("indices", [(0, 1, 2, 3), (1, 2, 3, 4)])
@pytest.mark.parametrize("shape", [None, (5, 3)])
def test_create_from_csc(dense_dim, indptr, indices, shape):
    val_shape = (len(indices),)
    if dense_dim is not None:
        val_shape += (dense_dim,)
78
79
80
81
    ctx = F.ctx()
    val = torch.randn(val_shape).to(ctx)
    indptr = torch.tensor(indptr).to(ctx)
    indices = torch.tensor(indices).to(ctx)
82
83
84
85
86
87
88
89
90
    mat = create_from_csc(indptr, indices, val, shape)

    if shape is None:
        shape = (torch.max(indices).item() + 1, indptr.numel() - 1)

    assert mat.device == val.device
    assert mat.shape == shape
    assert mat.nnz == indices.numel()
    assert mat.dtype == val.dtype
91
92
    mat_indptr, mat_indices, value_indices = mat.csc()
    mat_val = mat.val if value_indices is None else mat.val[value_indices]
93
94
95
    assert torch.allclose(mat_indptr, indptr)
    assert torch.allclose(mat_indices, indices)
    assert torch.allclose(mat_val, val)
96

97

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
@pytest.mark.parametrize("val_shape", [(3), (3, 2)])
def test_dense(val_shape):
    ctx = F.ctx()

    row = torch.tensor([1, 1, 2]).to(ctx)
    col = torch.tensor([2, 4, 3]).to(ctx)
    val = torch.randn(val_shape).to(ctx)
    A = create_from_coo(row, col, val)
    A_dense = A.dense()

    shape = A.shape + val.shape[1:]
    mat = torch.zeros(shape, device=ctx)
    mat[row, col] = val
    assert torch.allclose(A_dense, mat)

113

114
115
116
117
118
119
120
121
122
123
124
125
def test_set_val():
    ctx = F.ctx()

    row = torch.tensor([1, 1, 2]).to(ctx)
    col = torch.tensor([2, 4, 3]).to(ctx)
    nnz = len(row)
    old_val = torch.ones(nnz).to(ctx)
    A = create_from_coo(row, col, old_val)

    new_val = torch.zeros(nnz).to(ctx)
    A.val = new_val
    assert torch.allclose(new_val, A.val)
czkkkkkk's avatar
czkkkkkk committed
126

127

czkkkkkk's avatar
czkkkkkk committed
128
@pytest.mark.parametrize("dense_dim", [None, 4])
129
@pytest.mark.parametrize("indptr", [(0, 0, 1, 4), (0, 1, 2, 4)])
czkkkkkk's avatar
czkkkkkk committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
@pytest.mark.parametrize("indices", [(0, 1, 2, 3), (1, 4, 3, 2)])
@pytest.mark.parametrize("shape", [None, (3, 5)])
def test_csr_to_coo(dense_dim, indptr, indices, shape):
    ctx = F.ctx()
    val_shape = (len(indices),)
    if dense_dim is not None:
        val_shape += (dense_dim,)
    val = torch.randn(val_shape).to(ctx)
    indptr = torch.tensor(indptr).to(ctx)
    indices = torch.tensor(indices).to(ctx)
    mat = create_from_csr(indptr, indices, val, shape)

    if shape is None:
        shape = (indptr.numel() - 1, torch.max(indices).item() + 1)

145
146
147
148
149
    row = (
        torch.arange(0, indptr.shape[0] - 1)
        .to(ctx)
        .repeat_interleave(torch.diff(indptr))
    )
czkkkkkk's avatar
czkkkkkk committed
150
    col = indices
151
152
    mat_row, mat_col = mat.coo()
    mat_val = mat.val
czkkkkkk's avatar
czkkkkkk committed
153
154
155
156
157
158
159
160
161

    assert mat.shape == shape
    assert mat.nnz == row.numel()
    assert mat.device == row.device
    assert mat.dtype == val.dtype
    assert torch.allclose(mat_val, val)
    assert torch.allclose(mat_row, row)
    assert torch.allclose(mat_col, col)

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

@pytest.mark.parametrize("dense_dim", [None, 4])
@pytest.mark.parametrize("indptr", [(0, 0, 1, 4), (0, 1, 2, 4)])
@pytest.mark.parametrize("indices", [(0, 1, 2, 3), (1, 4, 3, 2)])
@pytest.mark.parametrize("shape", [None, (5, 3)])
def test_csc_to_coo(dense_dim, indptr, indices, shape):
    ctx = F.ctx()
    val_shape = (len(indices),)
    if dense_dim is not None:
        val_shape += (dense_dim,)
    val = torch.randn(val_shape).to(ctx)
    indptr = torch.tensor(indptr).to(ctx)
    indices = torch.tensor(indices).to(ctx)
    mat = create_from_csc(indptr, indices, val, shape)

    if shape is None:
        shape = (torch.max(indices).item() + 1, indptr.numel() - 1)

    col = (
        torch.arange(0, indptr.shape[0] - 1)
        .to(ctx)
        .repeat_interleave(torch.diff(indptr))
    )
    row = indices
    mat_row, mat_col = mat.coo()
    mat_val = mat.val

    assert mat.shape == shape
    assert mat.nnz == row.numel()
    assert mat.device == row.device
    assert mat.dtype == val.dtype
    assert torch.allclose(mat_val, val)
    assert torch.allclose(mat_row, row)
    assert torch.allclose(mat_col, col)


def _scatter_add(a, index, v=1):
    index = index.tolist()
    for i in index:
        a[i] += v
    return a


@pytest.mark.parametrize("dense_dim", [None, 4])
@pytest.mark.parametrize("row", [(0, 0, 1, 2), (0, 1, 2, 4)])
@pytest.mark.parametrize("col", [(0, 1, 2, 2), (1, 3, 3, 4)])
@pytest.mark.parametrize("shape", [None, (5, 5), (5, 6)])
def test_coo_to_csr(dense_dim, row, col, shape):
    val_shape = (len(row),)
    if dense_dim is not None:
        val_shape += (dense_dim,)
    ctx = F.ctx()
    val = torch.randn(val_shape).to(ctx)
    row = torch.tensor(row).to(ctx)
    col = torch.tensor(col).to(ctx)
    mat = create_from_coo(row, col, val, shape)

    if shape is None:
        shape = (torch.max(row).item() + 1, torch.max(col).item() + 1)

    mat_indptr, mat_indices, value_indices = mat.csr()
    mat_val = mat.val if value_indices is None else mat.val[value_indices]
    indptr = torch.zeros(shape[0] + 1).to(ctx)
    indptr = _scatter_add(indptr, row + 1)
    indptr = torch.cumsum(indptr, 0).long()
    indices = col

    assert mat.shape == shape
    assert mat.nnz == row.numel()
    assert mat.dtype == val.dtype
    assert torch.allclose(mat_val, val)
    assert torch.allclose(mat_indptr, indptr)
    assert torch.allclose(mat_indices, indices)


@pytest.mark.parametrize("dense_dim", [None, 4])
@pytest.mark.parametrize("indptr", [(0, 0, 1, 4), (0, 1, 2, 4)])
@pytest.mark.parametrize("indices", [(0, 1, 2, 3), (1, 4, 3, 2)])
@pytest.mark.parametrize("shape", [None, (5, 3)])
def test_csc_to_csr(dense_dim, indptr, indices, shape):
    ctx = F.ctx()
    val_shape = (len(indices),)
    if dense_dim is not None:
        val_shape += (dense_dim,)
    val = torch.randn(val_shape).to(ctx)
    indptr = torch.tensor(indptr).to(ctx)
    indices = torch.tensor(indices).to(ctx)
    mat = create_from_csc(indptr, indices, val, shape)
    mat_indptr, mat_indices, value_indices = mat.csr()
    mat_val = mat.val if value_indices is None else mat.val[value_indices]

    if shape is None:
        shape = (torch.max(indices).item() + 1, indptr.numel() - 1)

    col = (
        torch.arange(0, indptr.shape[0] - 1)
        .to(ctx)
        .repeat_interleave(torch.diff(indptr))
    )
    row = indices
    row, sort_index = row.sort(stable=True)
    col = col[sort_index]
    val = val[sort_index]
    indptr = torch.zeros(shape[0] + 1).to(ctx)
    indptr = _scatter_add(indptr, row + 1)
    indptr = torch.cumsum(indptr, 0).long()
    indices = col

    assert mat.shape == shape
    assert mat.nnz == row.numel()
    assert mat.device == row.device
    assert mat.dtype == val.dtype
    assert torch.allclose(mat_val, val)
    assert torch.allclose(mat_indptr, indptr)
    assert torch.allclose(mat_indices, indices)


@pytest.mark.parametrize("dense_dim", [None, 4])
@pytest.mark.parametrize("row", [(0, 0, 1, 2), (0, 1, 2, 4)])
@pytest.mark.parametrize("col", [(0, 1, 2, 2), (1, 3, 3, 4)])
@pytest.mark.parametrize("shape", [None, (5, 5), (5, 6)])
def test_coo_to_csc(dense_dim, row, col, shape):

    val_shape = (len(row),)
    if dense_dim is not None:
        val_shape += (dense_dim,)
    ctx = F.ctx()
    val = torch.randn(val_shape).to(ctx)
    row = torch.tensor(row).to(ctx)
    col = torch.tensor(col).to(ctx)
    mat = create_from_coo(row, col, val, shape)

    if shape is None:
        shape = (torch.max(row).item() + 1, torch.max(col).item() + 1)

    mat_indptr, mat_indices, value_indices = mat.csc()
    mat_val = mat.val if value_indices is None else mat.val[value_indices]
    indptr = torch.zeros(shape[1] + 1).to(ctx)
    _scatter_add(indptr, col + 1)
    indptr = torch.cumsum(indptr, 0).long()
    indices = row

    assert mat.shape == shape
    assert mat.nnz == row.numel()
    assert mat.dtype == val.dtype
    assert torch.allclose(mat_val, val)
    assert torch.allclose(mat_indptr, indptr)
    assert torch.allclose(mat_indices, indices)


@pytest.mark.parametrize("dense_dim", [None, 4])
@pytest.mark.parametrize("indptr", [(0, 0, 1, 4), (0, 1, 2, 4)])
@pytest.mark.parametrize("indices", [(0, 1, 2, 3), (1, 2, 3, 4)])
@pytest.mark.parametrize("shape", [None, (3, 5)])
def test_csr_to_csc(dense_dim, indptr, indices, shape):
    val_shape = (len(indices),)
    if dense_dim is not None:
        val_shape += (dense_dim,)
    ctx = F.ctx()
    val = torch.randn(val_shape).to(ctx)
    indptr = torch.tensor(indptr).to(ctx)
    indices = torch.tensor(indices).to(ctx)
    mat = create_from_csr(indptr, indices, val, shape)
    mat_indptr, mat_indices, value_indices = mat.csc()
    mat_val = mat.val if value_indices is None else mat.val[value_indices]

    if shape is None:
        shape = (indptr.numel() - 1, torch.max(indices).item() + 1)

    row = (
        torch.arange(0, indptr.shape[0] - 1)
        .to(ctx)
        .repeat_interleave(torch.diff(indptr))
    )

    col = indices
    col, sort_index = col.sort(stable=True)
    row = row[sort_index]
    val = val[sort_index]
    indptr = torch.zeros(shape[1] + 1).to(ctx)
    indptr = _scatter_add(indptr, col + 1)
    indptr = torch.cumsum(indptr, 0).long()
    indices = row

    assert mat.shape == shape
    assert mat.nnz == row.numel()
    assert mat.device == row.device
    assert mat.dtype == val.dtype
    assert torch.allclose(mat_val, val)
    assert torch.allclose(mat_indptr, indptr)
    assert torch.allclose(mat_indices, indices)