binary_reduce_impl.h 16.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*!
 *  Copyright (c) 2019 by Contributors
 * \file kernel/binary_reduce_impl.h
 * \brief Implementations of binary reduce operations.
 */
#ifndef DGL_KERNEL_BINARY_REDUCE_IMPL_H_
#define DGL_KERNEL_BINARY_REDUCE_IMPL_H_

#include <minigun/minigun.h>
#include <dgl/runtime/device_api.h>

#include <algorithm>
#include <string>

#ifdef __CUDACC__
#include "../runtime/cuda/cuda_common.h"
#endif
#include "./binary_reduce.h"
#include "./binary_reduce_impl_decl.h"
20
#include "./csr_interface.h"
21
22
23
24
25
26
27
28
29
30
#include "./utils.h"

namespace dgl {
namespace kernel {

///////////////////////////////////////////////////////////////////////////////
// BinaryReduce device-agnostic implementation
///////////////////////////////////////////////////////////////////////////////

template <int XPU, typename Idx, typename DType, typename Reducer>
31
GData<Idx, DType> AllocGData(const std::string& op,
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
    const DLContext& ctx, int64_t x_len,
    runtime::NDArray lhs_mapping, runtime::NDArray rhs_mapping,
    runtime::NDArray lhs_data, runtime::NDArray rhs_data,
    runtime::NDArray out_mapping, runtime::NDArray out_data) {
  // GData
  GData<Idx, DType> gdata;
  gdata.x_length = x_len;
  gdata.out_size = out_data->shape[0];
  gdata.lhs_data = static_cast<DType*>(lhs_data->data);
  gdata.rhs_data = static_cast<DType*>(rhs_data->data);
  gdata.out_data = static_cast<DType*>(out_data->data);
  if (!utils::IsNoneArray(lhs_mapping)) {
    gdata.lhs_mapping = static_cast<Idx*>(lhs_mapping->data);
  }
  if (!utils::IsNoneArray(rhs_mapping)) {
    gdata.rhs_mapping = static_cast<Idx*>(rhs_mapping->data);
  }
  if (!utils::IsNoneArray(out_mapping)) {
    gdata.out_mapping = static_cast<Idx*>(out_mapping->data);
  }
52
53
54
55
56
57
58
59
60

  // for dot operation: vector [dot] vector
  if (op == binary_op::kDot) {
    // get size of vector
    gdata.data_len = lhs_data->shape[lhs_data->ndim - 1];
  } else {
    gdata.data_len = 1;
  }

61
62
63
64
65
66
67
68
69
  // fill out data with zero values
  utils::Fill<XPU>(ctx, gdata.out_data, utils::NElements(out_data), Zero<Reducer>::value);
  return gdata;
}

template <int XPU>
void BinaryReduceImpl(
    const std::string& reducer,
    const std::string& op,
70
    const CSRWrapper& graph,
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    binary_op::Target lhs, binary_op::Target rhs,
    runtime::NDArray lhs_data, runtime::NDArray rhs_data,
    runtime::NDArray out_data,
    runtime::NDArray lhs_mapping, runtime::NDArray rhs_mapping,
    runtime::NDArray out_mapping) {
  using runtime::NDArray;
  using minigun::Csr;
  // device
#ifdef __CUDACC__
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
#endif
  const int64_t x_len = utils::ComputeXLength(out_data);

  // advance config
  minigun::advance::RuntimeConfig rtcfg;
  rtcfg.ctx = out_data->ctx;
#ifdef __CUDACC__
  rtcfg.stream = thr_entry->stream;
  const int nt = utils::FindNumThreads(x_len, 64);
  rtcfg.data_num_threads = nt;
  // XXX(minjie): hard-code to let each thread compute two elements to increase
  //              instruction level parallelism
  rtcfg.data_num_blocks = (x_len + (nt * 2) - 1) / (nt * 2);
#endif
  if (reducer == binary_op::kReduceMean) {
    // TODO(minjie): divide
    LOG(FATAL) << "reduce mean is not supported.";
  }
  const DLDataType& dtype = out_data->dtype;
100
  const auto bits = graph.NumBits();
101
102
103
  DGL_DTYPE_SWITCH(dtype, DType, {
    DGL_IDX_TYPE_SWITCH(bits, Idx, {
      REDUCER_SWITCH(reducer, XPU, DType, Reducer, {
104
        auto gdata = AllocGData<XPU, Idx, DType, Reducer>(op,
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
            rtcfg.ctx, x_len, lhs_mapping, rhs_mapping,
            lhs_data, rhs_data, out_mapping, out_data);
        OP_TARGET_SWITCH(op, lhs, rhs, DType, BinaryOp, LeftTarget, RightTarget, {
          CallBinaryReduce<XPU, Idx, DType, LeftTarget,
            RightTarget, BinaryOp, Reducer>(rtcfg, graph, &gdata);
        });
      });
    });
  });
}

///////////////////////////////////////////////////////////////////////////////
// BackwardBinaryReduce device-agnostic implementation
///////////////////////////////////////////////////////////////////////////////

template <int XPU, typename Idx, typename DType>
BackwardGData<Idx, DType> AllocBackwardGData(
122
    const std::string& op, const DLContext& ctx, int64_t x_len,
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    runtime::NDArray lhs_mapping, runtime::NDArray rhs_mapping, runtime::NDArray out_mapping,
    runtime::NDArray lhs_data, runtime::NDArray rhs_data, runtime::NDArray out_data,
    runtime::NDArray grad_out_data,
    runtime::NDArray grad_lhs_data, runtime::NDArray grad_rhs_data) {
  // GData
  BackwardGData<Idx, DType> gdata;
  gdata.x_length = x_len;
  gdata.out_size = out_data->shape[0];
  gdata.lhs_data = static_cast<DType*>(lhs_data->data);
  gdata.rhs_data = static_cast<DType*>(rhs_data->data);
  gdata.out_data = static_cast<DType*>(out_data->data);
  gdata.grad_out_data = static_cast<DType*>(grad_out_data->data);
  if (!utils::IsNoneArray(grad_lhs_data)) {
    gdata.grad_lhs_data = static_cast<DType*>(grad_lhs_data->data);
    // fill out data with zero values
    utils::Fill<XPU>(ctx, gdata.grad_lhs_data, utils::NElements(grad_lhs_data),
                static_cast<DType>(0));
  }
  if (!utils::IsNoneArray(grad_rhs_data)) {
    gdata.grad_rhs_data = static_cast<DType*>(grad_rhs_data->data);
    // fill out data with zero values
    utils::Fill<XPU>(ctx, gdata.grad_rhs_data, utils::NElements(grad_rhs_data),
                static_cast<DType>(0));
  }
  if (!utils::IsNoneArray(lhs_mapping)) {
    gdata.lhs_mapping = static_cast<Idx*>(lhs_mapping->data);
  }
  if (!utils::IsNoneArray(rhs_mapping)) {
    gdata.rhs_mapping = static_cast<Idx*>(rhs_mapping->data);
  }
  if (!utils::IsNoneArray(out_mapping)) {
    gdata.out_mapping = static_cast<Idx*>(out_mapping->data);
  }
156
157
158
159
160
161
162
163

  // for dot operation: vector [dot] vector
  if (op == binary_op::kDot) {
    // get size of vector
    gdata.data_len = lhs_data->shape[lhs_data->ndim - 1];
  } else {
    gdata.data_len = 1;
  }
164
165
166
167
168
169
170
  return gdata;
}

template <int XPU>
void BackwardBinaryReduceImpl(
    const std::string& reducer,
    const std::string& op,
171
    const CSRWrapper& graph,
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    binary_op::Target lhs, binary_op::Target rhs,
    runtime::NDArray lhs_mapping, runtime::NDArray rhs_mapping, runtime::NDArray out_mapping,
    runtime::NDArray lhs_data, runtime::NDArray rhs_data, runtime::NDArray out_data,
    runtime::NDArray grad_out_data,
    runtime::NDArray grad_lhs_data, runtime::NDArray grad_rhs_data) {
  using runtime::NDArray;
  using minigun::Csr;
#ifdef __CUDACC__
  // device
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
#endif
  // Graph
  const int64_t x_len = utils::ComputeXLength(out_data);

  // advance config
  minigun::advance::RuntimeConfig rtcfg;
  rtcfg.ctx = out_data->ctx;
#ifdef __CUDACC__
  rtcfg.stream = thr_entry->stream;
  const int nt = utils::FindNumThreads(x_len, 64);
  rtcfg.data_num_threads = nt;
  // XXX(minjie): hard-code to let each thread compute two elements to increase
  //              instruction level parallelism
  rtcfg.data_num_blocks = (x_len + (nt * 2) - 1) / (nt * 2);
#endif

  const DLDataType& dtype = out_data->dtype;
  const bool req_lhs = !utils::IsNoneArray(grad_lhs_data);
  const bool req_rhs = !utils::IsNoneArray(grad_rhs_data);
201
  const auto bits = graph.NumBits();
202

203
204
205
206
207
208
  if (reducer == binary_op::kReduceMean) {
    // TODO(minjie): divide
    LOG(FATAL) << "reduce mean is not supported.";
  }
  DGL_DTYPE_SWITCH(dtype, DType, {
    DGL_IDX_TYPE_SWITCH(bits, Idx, {
209
      auto gdata = AllocBackwardGData<XPU, Idx, DType>(op,
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
          rtcfg.ctx, x_len, lhs_mapping, rhs_mapping, out_mapping,
          lhs_data, rhs_data, out_data, grad_out_data,
          grad_lhs_data, grad_rhs_data);
      BACKWARD_MODE_SWITCH(req_lhs, req_rhs, Mode, {
        REDUCER_SWITCH(reducer, XPU, DType, Reducer, {
          OP_TARGET_SWITCH(op, lhs, rhs, DType, BinaryOp, LeftTarget, RightTarget, {
            CallBackwardBinaryReduce<XPU, Mode, Idx, DType, LeftTarget,
              RightTarget, BinaryOp, Reducer>(rtcfg, graph, &gdata);
          });
        });
      });
    });
  });
}

///////////////////////////////////////////////////////////////////////////////
// BinaryReduceBcast device-agnostic implementation
///////////////////////////////////////////////////////////////////////////////

template <int XPU, int NDim, typename Idx, typename DType, typename Reducer>
BcastGData<NDim, Idx, DType> AllocBcastGData(
    const DLContext& ctx, const BcastInfo& info,
    runtime::NDArray lhs_mapping, runtime::NDArray rhs_mapping,
    runtime::NDArray lhs_data, runtime::NDArray rhs_data,
    runtime::NDArray out_mapping, runtime::NDArray out_data) {
  // GData
  BcastGData<NDim, Idx, DType> gdata;
  // dim, shape and stride
  gdata.ndim = info.lhs_shape.size();
  std::copy(info.lhs_shape.begin(), info.lhs_shape.end(), gdata.lhs_shape);
  std::copy(info.lhs_stride.begin(), info.lhs_stride.end(), gdata.lhs_stride);
  std::copy(info.rhs_shape.begin(), info.rhs_shape.end(), gdata.rhs_shape);
  std::copy(info.rhs_stride.begin(), info.rhs_stride.end(), gdata.rhs_stride);
  std::copy(info.out_shape.begin(), info.out_shape.end(), gdata.out_shape);
  std::copy(info.out_stride.begin(), info.out_stride.end(), gdata.out_stride);
  gdata.lhs_len = utils::Prod(info.lhs_shape);
  gdata.rhs_len = utils::Prod(info.rhs_shape);
  gdata.out_len = utils::Prod(info.out_shape);
  // data
  gdata.lhs_data = static_cast<DType*>(lhs_data->data);
  gdata.rhs_data = static_cast<DType*>(rhs_data->data);
  gdata.out_data = static_cast<DType*>(out_data->data);
  if (!utils::IsNoneArray(lhs_mapping)) {
    gdata.lhs_mapping = static_cast<Idx*>(lhs_mapping->data);
  }
  if (!utils::IsNoneArray(rhs_mapping)) {
    gdata.rhs_mapping = static_cast<Idx*>(rhs_mapping->data);
  }
  if (!utils::IsNoneArray(out_mapping)) {
    gdata.out_mapping = static_cast<Idx*>(out_mapping->data);
  }
261
262
  gdata.data_len = info.data_len;

263
264
265
266
267
268
269
270
271
272
  // fill out data with zero values
  utils::Fill<XPU>(ctx, gdata.out_data, utils::NElements(out_data), Zero<Reducer>::value);
  return gdata;
}

template <int XPU>
void BinaryReduceBcastImpl(
    const BcastInfo& info,
    const std::string& reducer,
    const std::string& op,
273
    const CSRWrapper& graph,
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    binary_op::Target lhs,
    binary_op::Target rhs,
    runtime::NDArray lhs_data,
    runtime::NDArray rhs_data,
    runtime::NDArray out_data,
    runtime::NDArray lhs_mapping,
    runtime::NDArray rhs_mapping,
    runtime::NDArray out_mapping) {
  using runtime::NDArray;
  using minigun::Csr;
#ifdef __CUDACC__
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
#endif
  // advance config
  minigun::advance::RuntimeConfig rtcfg;
  rtcfg.ctx = out_data->ctx;
#ifdef __CUDACC__
  rtcfg.stream = thr_entry->stream;
  const int64_t x_len = utils::ComputeXLength(out_data);
  const int nt = utils::FindNumThreads(x_len, 64);
  rtcfg.data_num_threads = nt;
  // XXX(minjie): hard-code to let each thread compute two elements to increase
  //              instruction level parallelism
  rtcfg.data_num_blocks = (x_len + (nt * 2) - 1) / (nt * 2);
#endif

  const DLDataType& dtype = out_data->dtype;
  const int bcast_ndim = info.out_shape.size();
302
  const auto bits = graph.NumBits();
303

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
  if (reducer == binary_op::kReduceMean) {
    // TODO(minjie): divide
    LOG(FATAL) << "reduce mean is not supported.";
  }
  DGL_DTYPE_SWITCH(dtype, DType, {
    DGL_IDX_TYPE_SWITCH(bits, Idx, {
      REDUCER_SWITCH(reducer, XPU, DType, Reducer, {
        BCAST_NDIM_SWITCH(bcast_ndim, NDim, {
          auto gdata = AllocBcastGData<XPU, NDim, Idx, DType, Reducer>(
              rtcfg.ctx, info, lhs_mapping, rhs_mapping,
              lhs_data, rhs_data, out_mapping, out_data);
          OP_TARGET_SWITCH(op, lhs, rhs, DType, BinaryOp, LeftTarget, RightTarget, {
            CallBinaryReduceBcast<XPU, NDim, Idx, DType, LeftTarget,
              RightTarget, BinaryOp, Reducer>(rtcfg, graph, &gdata);
          });
        });
      });
    });
  });
}

///////////////////////////////////////////////////////////////////////////////
// BackwardBinaryReduceBcast device-agnostic implementation
///////////////////////////////////////////////////////////////////////////////

template <int XPU, int NDim, typename Idx, typename DType>
BackwardBcastGData<NDim, Idx, DType> AllocBackwardBcastGData(
    const DLContext& ctx, const BcastInfo& info,
    runtime::NDArray lhs_mapping, runtime::NDArray rhs_mapping, runtime::NDArray out_mapping,
    runtime::NDArray lhs, runtime::NDArray rhs, runtime::NDArray out, runtime::NDArray grad_out,
    runtime::NDArray grad_lhs, runtime::NDArray grad_rhs) {
  // GData
  BackwardBcastGData<NDim, Idx, DType> gdata;
  // dim, shape and stride
  gdata.ndim = info.lhs_shape.size();
  gdata.lhs_len = utils::Prod(info.lhs_shape);
  gdata.rhs_len = utils::Prod(info.rhs_shape);
  gdata.out_len = utils::Prod(info.out_shape);
  std::copy(info.lhs_shape.begin(), info.lhs_shape.end(), gdata.lhs_shape);
  std::copy(info.lhs_stride.begin(), info.lhs_stride.end(), gdata.lhs_stride);
  std::copy(info.rhs_shape.begin(), info.rhs_shape.end(), gdata.rhs_shape);
  std::copy(info.rhs_stride.begin(), info.rhs_stride.end(), gdata.rhs_stride);
  std::copy(info.out_shape.begin(), info.out_shape.end(), gdata.out_shape);
  std::copy(info.out_stride.begin(), info.out_stride.end(), gdata.out_stride);
  // mappings
  if (!utils::IsNoneArray(lhs_mapping)) {
    gdata.lhs_mapping = static_cast<Idx*>(lhs_mapping->data);
  }
  if (!utils::IsNoneArray(rhs_mapping)) {
    gdata.rhs_mapping = static_cast<Idx*>(rhs_mapping->data);
  }
  if (!utils::IsNoneArray(out_mapping)) {
    gdata.out_mapping = static_cast<Idx*>(out_mapping->data);
  }
358
359
  gdata.data_len = info.data_len;

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
  // data
  gdata.lhs_data = static_cast<DType*>(lhs->data);
  gdata.rhs_data = static_cast<DType*>(rhs->data);
  gdata.out_data = static_cast<DType*>(out->data);
  gdata.grad_out_data = static_cast<DType*>(grad_out->data);
  if (!utils::IsNoneArray(grad_lhs)) {
    gdata.grad_lhs_data = static_cast<DType*>(grad_lhs->data);
    // fill out data with zero values
    utils::Fill<XPU>(ctx, gdata.grad_lhs_data, utils::NElements(grad_lhs),
                static_cast<DType>(0));
  }
  if (!utils::IsNoneArray(grad_rhs)) {
    gdata.grad_rhs_data = static_cast<DType*>(grad_rhs->data);
    // fill out data with zero values
    utils::Fill<XPU>(ctx, gdata.grad_rhs_data, utils::NElements(grad_rhs),
                static_cast<DType>(0));
  }
  return gdata;
}

template <int XPU>
void BackwardBinaryReduceBcastImpl(
    const BcastInfo& info,
    const std::string& reducer,
    const std::string& op,
385
    const CSRWrapper& graph,
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    binary_op::Target lhs_tgt, binary_op::Target rhs_tgt,
    runtime::NDArray lhs_mapping, runtime::NDArray rhs_mapping, runtime::NDArray out_mapping,
    runtime::NDArray lhs, runtime::NDArray rhs, runtime::NDArray out, runtime::NDArray grad_out,
    runtime::NDArray grad_lhs, runtime::NDArray grad_rhs) {
  using runtime::NDArray;
  using minigun::Csr;
#ifdef __CUDACC__
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
#endif
  // advance config
  minigun::advance::RuntimeConfig rtcfg;
  rtcfg.ctx = out->ctx;
#ifdef __CUDACC__
  rtcfg.stream = thr_entry->stream;
  const int64_t x_len = utils::ComputeXLength(out);
  const int nt = utils::FindNumThreads(x_len, 64);
  rtcfg.data_num_threads = nt;
  // XXX(minjie): hard-code to let each thread compute two elements to increase
  //              instruction level parallelism
  rtcfg.data_num_blocks = (x_len + (nt * 2) - 1) / (nt * 2);
#endif

  const DLDataType& dtype = out->dtype;
  const int bcast_ndim = info.out_shape.size();
  const bool req_lhs = !utils::IsNoneArray(grad_lhs);
  const bool req_rhs = !utils::IsNoneArray(grad_rhs);
412
  const auto bits = graph.NumBits();
413

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
  if (reducer == binary_op::kReduceMean) {
    // TODO(minjie): divide
    LOG(FATAL) << "reduce mean is not supported.";
  }
  DGL_DTYPE_SWITCH(dtype, DType, {
    DGL_IDX_TYPE_SWITCH(bits, Idx, {
      BCAST_NDIM_SWITCH(bcast_ndim, NDim, {
        auto gdata = AllocBackwardBcastGData<XPU, NDim, Idx, DType>(
            rtcfg.ctx, info,
            lhs_mapping, rhs_mapping, out_mapping,
            lhs, rhs, out, grad_out,
            grad_lhs, grad_rhs);
        BACKWARD_MODE_SWITCH(req_lhs, req_rhs, Mode, {
          REDUCER_SWITCH(reducer, XPU, DType, Reducer, {
            OP_TARGET_SWITCH(op, lhs_tgt, rhs_tgt, DType, BinaryOp, LeftTarget, RightTarget, {
              CallBackwardBinaryReduceBcast<XPU, Mode, NDim, Idx, DType,
                LeftTarget, RightTarget, BinaryOp, Reducer>(rtcfg, graph, &gdata);
            });
          });
        });
      });
    });
  });
}

}  // namespace kernel
}  // namespace dgl

#endif  // DGL_KERNEL_BINARY_REDUCE_IMPL_H_