validate_reldn.py 9.14 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import dgl
import mxnet as mx
import numpy as np
import logging, time, argparse
from mxnet import nd, gluon
from gluoncv.data.batchify import Pad

from model import faster_rcnn_resnet101_v1d_custom, RelDN
from utils import *
from data import *

def parse_args():
    parser = argparse.ArgumentParser(description='Validate Pre-trained RelDN Model.')
    parser.add_argument('--gpus', type=str, default='0',
                        help="Training with GPUs, you can specify 1,3 for example.")
    parser.add_argument('--batch-size', type=int, default=8,
                        help="Total batch-size for training.")
    parser.add_argument('--metric', type=str, default='sgdet',
                        help="Evaluation metric, could be 'predcls', 'phrcls', 'sgdet' or 'sgdet+'.")
    parser.add_argument('--pretrained-faster-rcnn-params', type=str, required=True,
                        help="Path to saved Faster R-CNN model parameters.")
    parser.add_argument('--reldn-params', type=str, required=True,
                        help="Path to saved Faster R-CNN model parameters.")
    parser.add_argument('--faster-rcnn-params', type=str, required=True,
                        help="Path to saved Faster R-CNN model parameters.")
    parser.add_argument('--log-dir', type=str, default='reldn_output.log',
                        help="Path to save training logs.")
    parser.add_argument('--freq-prior', type=str, default='freq_prior.pkl',
                        help="Path to saved frequency prior data.")
    parser.add_argument('--verbose-freq', type=int, default=100,
                        help="Frequency of log printing in number of iterations.")
    args = parser.parse_args()
    return args

args = parse_args()

filehandler = logging.FileHandler(args.log_dir)
streamhandler = logging.StreamHandler()
logger = logging.getLogger('')
logger.setLevel(logging.INFO)
logger.addHandler(filehandler)
logger.addHandler(streamhandler)

# Hyperparams
ctx = [mx.gpu(int(i)) for i in args.gpus.split(',') if i.strip()]
if ctx:
    num_gpus = len(ctx)
    assert args.batch_size % num_gpus == 0
    per_device_batch_size = int(args.batch_size / num_gpus)
else:
    ctx = [mx.cpu()]
    per_device_batch_size = args.batch_size
batch_size = args.batch_size
N_relations = 50
N_objects = 150
batch_verbose_freq = args.verbose_freq

mode = args.metric
metric_list = []
topk_list = [20, 50, 100]
if mode == 'predcls':
    for topk in topk_list:
        metric_list.append(PredCls(topk=topk))
if mode == 'phrcls':
    for topk in topk_list:
        metric_list.append(PhrCls(topk=topk))
if mode == 'sgdet':
    for topk in topk_list:
        metric_list.append(SGDet(topk=topk))
if mode == 'sgdet+':
    for topk in topk_list:
        metric_list.append(SGDetPlus(topk=topk))
for metric in metric_list:
    metric.reset()

semantic_only = False
net = RelDN(n_classes=N_relations, prior_pkl=args.freq_prior,
            semantic_only=semantic_only)
net.load_parameters(args.reldn_params, ctx=ctx)

# dataset and dataloader
vg_val = VGRelation(split='val')
logger.info('data loaded!')
val_data = gluon.data.DataLoader(vg_val, batch_size=len(ctx), shuffle=False, num_workers=16*num_gpus,
                                 batchify_fn=dgl_mp_batchify_fn)
n_batches = len(val_data)

detector = faster_rcnn_resnet101_v1d_custom(classes=vg_val.obj_classes,
                                           pretrained_base=False, pretrained=False,
                                           additional_output=True)
params_path = args.pretrained_faster_rcnn_params
detector.load_parameters(params_path, ctx=ctx, ignore_extra=True, allow_missing=True)

detector_feat = faster_rcnn_resnet101_v1d_custom(classes=vg_val.obj_classes,
                                                pretrained_base=False, pretrained=False,
                                                additional_output=True)
detector_feat.load_parameters(params_path, ctx=ctx, ignore_extra=True, allow_missing=True)

detector_feat.features.load_parameters(args.faster_rcnn_params, ctx=ctx)

def get_data_batch(g_list, img_list, ctx_list):
    if g_list is None or len(g_list) == 0:
        return None, None
    n_gpu = len(ctx_list)
    size = len(g_list)
    if size < n_gpu:
        raise Exception("too small batch")
    step = size // n_gpu
    G_list = [g_list[i*step:(i+1)*step] if i < n_gpu - 1 else g_list[i*step:size] for i in range(n_gpu)]
    img_list = [img_list[i*step:(i+1)*step] if i < n_gpu - 1 else img_list[i*step:size] for i in range(n_gpu)]

    for G_slice, ctx in zip(G_list, ctx_list):
        for G in G_slice:
            G.ndata['bbox'] = G.ndata['bbox'].as_in_context(ctx)
            G.ndata['node_class'] = G.ndata['node_class'].as_in_context(ctx)
            G.ndata['node_class_vec'] = G.ndata['node_class_vec'].as_in_context(ctx)
            G.edata['rel_class'] = G.edata['rel_class'].as_in_context(ctx)
    img_list = [img.as_in_context(ctx) for img in img_list]
    return G_list, img_list

for i, (G_list, img_list) in enumerate(val_data):
    G_list, img_list = get_data_batch(G_list, img_list, ctx)
    if G_list is None or img_list is None:
        if (i+1) % batch_verbose_freq == 0:
            print_txt = 'Batch[%d/%d] '%\
                (i, n_batches)
            for metric in metric_list:
                metric_name, metric_val = metric.get()
                print_txt += '%s=%.4f '%(metric_name, metric_val)
            logger.info(print_txt)
        continue

    detector_res_list = []
    G_batch = []
    bbox_pad = Pad(axis=(0))
    # loss_cls_val = 0
    for G_slice, img in zip(G_list, img_list):
        cur_ctx = img.context
        if mode == 'predcls':
            bbox_list = [G.ndata['bbox'] for G in G_slice]
            bbox_stack = bbox_pad(bbox_list).as_in_context(cur_ctx)
            ids, scores, bbox, spatial_feat = detector(img, None, None, bbox_stack)

            node_class_list = [G.ndata['node_class'] for G in G_slice]
            node_class_stack = bbox_pad(node_class_list).as_in_context(cur_ctx)
            g_pred_batch = build_graph_validate_gt_obj(img, node_class_stack, bbox, spatial_feat,
                                                       bbox_improvement=True, overlap=False)
        elif mode == 'phrcls':
            # use ground truth bbox
            bbox_list = [G.ndata['bbox'] for G in G_slice]
            bbox_stack = bbox_pad(bbox_list).as_in_context(cur_ctx)
            ids, scores, bbox, spatial_feat = detector(img, None, None, bbox_stack)

            g_pred_batch = build_graph_validate_gt_bbox(img, ids, scores, bbox, spatial_feat,
                                                        bbox_improvement=True, overlap=False)
        else:
            # use predicted bbox
            ids, scores, bbox, feat, feat_ind, spatial_feat = detector(img)
            g_pred_batch = build_graph_validate_pred(img, ids, scores, bbox, feat_ind, spatial_feat,
                                                     bbox_improvement=True, scores_top_k=75, overlap=False)
        if not semantic_only:
            rel_bbox = g_pred_batch.edata['rel_bbox']
            batch_id = g_pred_batch.edata['batch_id'].asnumpy()
            n_sample_edges = g_pred_batch.number_of_edges()
            # g_pred_batch.edata['edge_feat'] = mx.nd.zeros((n_sample_edges, 49), ctx=cur_ctx)
            n_graph = len(G_slice)
            bbox_rel_list = []
            for j in range(n_graph):
                eids = np.where(batch_id == j)[0]
                if len(eids) > 0:
                    bbox_rel_list.append(rel_bbox[eids])
            bbox_rel_stack = bbox_pad(bbox_rel_list).as_in_context(cur_ctx)
            _, _, _, spatial_feat_rel = detector_feat(img, None, None, bbox_rel_stack)
            spatial_feat_rel_list = []
            for j in range(n_graph):
                eids = np.where(batch_id == j)[0]
                if len(eids) > 0:
                    spatial_feat_rel_list.append(spatial_feat_rel[j, 0:len(eids)])
            g_pred_batch.edata['edge_feat'] = nd.concat(*spatial_feat_rel_list, dim=0)

        G_batch.append(g_pred_batch)

    G_batch = [net(G) for G in G_batch]

    for G_slice, G_pred, img_slice in zip(G_list, G_batch, img_list):
        for G_gt, G_pred_one in zip(G_slice, [G_pred]):
            if G_pred_one is None or G_pred_one.number_of_nodes() == 0:
                continue
            gt_objects, gt_triplet = extract_gt(G_gt, img_slice.shape[2:4])
            pred_objects, pred_triplet = extract_pred(G_pred, joint_preds=True)
            for metric in metric_list:
                if isinstance(metric, PredCls) or \
                    isinstance(metric, PhrCls) or \
                    isinstance(metric, SGDet):
                    metric.update(gt_triplet, pred_triplet)
                else:
                    metric.update((gt_objects, gt_triplet), (pred_objects, pred_triplet))
    if (i+1) % batch_verbose_freq == 0:
        print_txt = 'Batch[%d/%d] '%\
            (i, n_batches)
        for metric in metric_list:
            metric_name, metric_val = metric.get()
            print_txt += '%s=%.4f '%(metric_name, metric_val)
        logger.info(print_txt)

print_txt = 'Batch[%d/%d] '%\
    (n_batches, n_batches)
for metric in metric_list:
    metric_name, metric_val = metric.get()
    print_txt += '%s=%.4f '%(metric_name, metric_val)
logger.info(print_txt)