gin.py 5.56 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
"""
How Powerful are Graph Neural Networks
https://arxiv.org/abs/1810.00826
https://openreview.net/forum?id=ryGs6iA5Km
Author's implementation: https://github.com/weihua916/powerful-gnns
"""

import mxnet as mx
from mxnet import nd, gluon
from mxnet.gluon import nn
from dgl.nn.mxnet.conv import GINConv
from dgl.nn.mxnet.glob import SumPooling, AvgPooling, MaxPooling


class ApplyNodeFunc(nn.Block):
    """Update the node feature hv with MLP, BN and ReLU."""
    def __init__(self, mlp):
        super(ApplyNodeFunc, self).__init__()
        with self.name_scope():
            self.mlp = mlp
            self.bn = nn.BatchNorm(in_channels=self.mlp.output_dim)

    def forward(self, h):
        h = self.mlp(h)
        h = self.bn(h)
        h = nd.relu(h)
        return h


class MLP(nn.Block):
    """MLP with linear output"""
    def __init__(self, num_layers, input_dim, hidden_dim, output_dim):
        """MLP layers construction

        Paramters
        ---------
        num_layers: int
            The number of linear layers
        input_dim: int
            The dimensionality of input features
        hidden_dim: int
            The dimensionality of hidden units at ALL layers
        output_dim: int
            The number of classes for prediction
        """
        super(MLP, self).__init__()
        self.linear_or_not = True
        self.num_layers = num_layers
        self.output_dim = output_dim

        with self.name_scope():
            if num_layers < 1:
                raise ValueError("number of layers should be positive!")
            elif num_layers == 1:
                # Linear model
                self.linear = nn.Dense(output_dim, in_units=input_dim)
            else:
                self.linear_or_not = False
                self.linears = nn.Sequential()
                self.batch_norms = nn.Sequential()

                self.linears.add(nn.Dense(hidden_dim, in_units=input_dim))
                for layer in range(num_layers - 2):
                    self.linears.add(nn.Dense(hidden_dim, in_units=hidden_dim))
                self.linears.add(nn.Dense(output_dim, in_units=hidden_dim))

                for layer in range(num_layers - 1):
                    self.batch_norms.add(nn.BatchNorm(in_channels=hidden_dim))

    def forward(self, x):
        if self.linear_or_not:
            return self.linear(x)
        else:
            h = x
            for i in range(self.num_layers - 1):
                h = nd.relu(self.batch_norms[i](self.linears[i](h)))
            return self.linears[-1](h)


class GIN(nn.Block):
    """GIN model"""
    def __init__(self, num_layers, num_mlp_layers, input_dim, hidden_dim,
                 output_dim, final_dropout, learn_eps, graph_pooling_type,
                 neighbor_pooling_type):
        """model parameters setting

        Paramters
        ---------
        num_layers: int
            The number of linear layers in the neural network
        num_mlp_layers: int
            The number of linear layers in mlps
        input_dim: int
            The dimensionality of input features
        hidden_dim: int
            The dimensionality of hidden units at ALL layers
        output_dim: int
            The number of classes for prediction
        final_dropout: float
            dropout ratio on the final linear layer
        learn_eps: boolean
            If True, learn epsilon to distinguish center nodes from neighbors
            If False, aggregate neighbors and center nodes altogether.
        neighbor_pooling_type: str
            how to aggregate neighbors (sum, mean, or max)
        graph_pooling_type: str
            how to aggregate entire nodes in a graph (sum, mean or max)

        """
        super(GIN, self).__init__()
        self.num_layers = num_layers
        self.learn_eps = learn_eps

        with self.name_scope():
            # List of MLPs
            self.ginlayers = nn.Sequential()
            self.batch_norms = nn.Sequential()

            for i in range(self.num_layers - 1):
                if i == 0:
                    mlp = MLP(num_mlp_layers, input_dim, hidden_dim, hidden_dim)
                else:
                    mlp = MLP(num_mlp_layers, hidden_dim, hidden_dim, hidden_dim)

                self.ginlayers.add(
                    GINConv(ApplyNodeFunc(mlp), neighbor_pooling_type, 0, self.learn_eps))
                self.batch_norms.add(nn.BatchNorm(in_channels=hidden_dim))

            self.linears_prediction = nn.Sequential()

            for i in range(num_layers):
                if i == 0:
                    self.linears_prediction.add(nn.Dense(output_dim, in_units=input_dim))
                else:
                    self.linears_prediction.add(nn.Dense(output_dim, in_units=hidden_dim))

            self.drop = nn.Dropout(final_dropout)

            if graph_pooling_type == 'sum':
                self.pool = SumPooling()
            elif graph_pooling_type == 'mean':
                self.pool = AvgPooling()
            elif graph_pooling_type == 'max':
                self.pool = MaxPooling()
            else:
                raise NotImplementedError

    def forward(self, g, h):
        hidden_rep = [h]

        for i in range(self.num_layers - 1):
            h = self.ginlayers[i](g, h)
            h = self.batch_norms[i](h)
            h = nd.relu(h)
            hidden_rep.append(h)

        score_over_layer = 0
        # perform pooling over all nodes in each graph in every layer
        for i, h in enumerate(hidden_rep):
            pooled_h = self.pool(g, h)
            score_over_layer = score_over_layer + self.drop(self.linears_prediction[i](pooled_h))

        return score_over_layer