test_partition.py 19.7 KB
Newer Older
1
2
import dgl
import sys
3
import os
4
5
6
import numpy as np
from scipy import sparse as spsp
from numpy.testing import assert_array_equal
7
from dgl.heterograph_index import create_unitgraph_from_coo
8
from dgl.distributed import partition_graph, load_partition
9
from dgl import function as fn
10
11
12
import backend as F
import unittest
import pickle
13
import random
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
def _get_inner_node_mask(graph, ntype_id):
    if dgl.NTYPE in graph.ndata:
        dtype = F.dtype(graph.ndata['inner_node'])
        return graph.ndata['inner_node'] * F.astype(graph.ndata[dgl.NTYPE] == ntype_id, dtype) == 1
    else:
        return graph.ndata['inner_node'] == 1

def _get_inner_edge_mask(graph, etype_id):
    if dgl.ETYPE in graph.edata:
        dtype = F.dtype(graph.edata['inner_edge'])
        return graph.edata['inner_edge'] * F.astype(graph.edata[dgl.ETYPE] == etype_id, dtype) == 1
    else:
        return graph.edata['inner_edge'] == 1

def _get_part_ranges(id_ranges):
    if isinstance(id_ranges, dict):
        return {key:np.concatenate([np.array(l) for l in id_ranges[key]]).reshape(-1, 2) \
                for key in id_ranges}
    else:
        return np.concatenate([np.array(l) for l in id_range[key]]).reshape(-1, 2)


37
def create_random_graph(n):
Jinjing Zhou's avatar
Jinjing Zhou committed
38
    arr = (spsp.random(n, n, density=0.001, format='coo', random_state=100) != 0).astype(np.int64)
39
    return dgl.from_scipy(arr)
40

41
def create_random_hetero():
42
    num_nodes = {'n1': 1000, 'n2': 1010, 'n3': 1020}
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    etypes = [('n1', 'r1', 'n2'),
              ('n1', 'r2', 'n3'),
              ('n2', 'r3', 'n3')]
    edges = {}
    for etype in etypes:
        src_ntype, _, dst_ntype = etype
        arr = spsp.random(num_nodes[src_ntype], num_nodes[dst_ntype], density=0.001, format='coo',
                          random_state=100)
        edges[etype] = (arr.row, arr.col)
    return dgl.heterograph(edges, num_nodes)

def verify_hetero_graph(g, parts):
    num_nodes = {ntype:0 for ntype in g.ntypes}
    num_edges = {etype:0 for etype in g.etypes}
    for part in parts:
        assert len(g.ntypes) == len(F.unique(part.ndata[dgl.NTYPE]))
        assert len(g.etypes) == len(F.unique(part.edata[dgl.ETYPE]))
        for ntype in g.ntypes:
            ntype_id = g.get_ntype_id(ntype)
            inner_node_mask = _get_inner_node_mask(part, ntype_id)
            num_inner_nodes = F.sum(F.astype(inner_node_mask, F.int64), 0)
            num_nodes[ntype] += num_inner_nodes
        for etype in g.etypes:
            etype_id = g.get_etype_id(etype)
            inner_edge_mask = _get_inner_edge_mask(part, etype_id)
            num_inner_edges = F.sum(F.astype(inner_edge_mask, F.int64), 0)
            num_edges[etype] += num_inner_edges
    # Verify the number of nodes are correct.
    for ntype in g.ntypes:
        print('node {}: {}, {}'.format(ntype, g.number_of_nodes(ntype), num_nodes[ntype]))
        assert g.number_of_nodes(ntype) == num_nodes[ntype]
    # Verify the number of edges are correct.
    for etype in g.etypes:
        print('edge {}: {}, {}'.format(etype, g.number_of_edges(etype), num_edges[etype]))
        assert g.number_of_edges(etype) == num_edges[etype]

    nids = {ntype:[] for ntype in g.ntypes}
    eids = {etype:[] for etype in g.etypes}
    for part in parts:
        src, dst, eid = part.edges(form='all')
        orig_src = F.gather_row(part.ndata['orig_id'], src)
        orig_dst = F.gather_row(part.ndata['orig_id'], dst)
        orig_eid = F.gather_row(part.edata['orig_id'], eid)
        etype_arr = F.gather_row(part.edata[dgl.ETYPE], eid)
        eid_type = F.gather_row(part.edata[dgl.EID], eid)
        for etype in g.etypes:
            etype_id = g.get_etype_id(etype)
            src1 = F.boolean_mask(orig_src, etype_arr == etype_id)
            dst1 = F.boolean_mask(orig_dst, etype_arr == etype_id)
            eid1 = F.boolean_mask(orig_eid, etype_arr == etype_id)
            exist = g.has_edges_between(src1, dst1, etype=etype)
            assert np.all(F.asnumpy(exist))
            eid2 = g.edge_ids(src1, dst1, etype=etype)
            assert np.all(F.asnumpy(eid1 == eid2))
            eids[etype].append(F.boolean_mask(eid_type, etype_arr == etype_id))
            # Make sure edge Ids fall into a range.
            inner_edge_mask = _get_inner_edge_mask(part, etype_id)
            inner_eids = np.sort(F.asnumpy(F.boolean_mask(part.edata[dgl.EID], inner_edge_mask)))
            assert np.all(inner_eids == np.arange(inner_eids[0], inner_eids[-1] + 1))

        for ntype in g.ntypes:
            ntype_id = g.get_ntype_id(ntype)
            # Make sure inner nodes have Ids fall into a range.
            inner_node_mask = _get_inner_node_mask(part, ntype_id)
            inner_nids = F.boolean_mask(part.ndata[dgl.NID], inner_node_mask)
            assert np.all(F.asnumpy(inner_nids == F.arange(F.as_scalar(inner_nids[0]),
                                                           F.as_scalar(inner_nids[-1]) + 1)))
            nids[ntype].append(inner_nids)

    for ntype in nids:
        nids_type = F.cat(nids[ntype], 0)
        uniq_ids = F.unique(nids_type)
        # We should get all nodes.
        assert len(uniq_ids) == g.number_of_nodes(ntype)
    for etype in eids:
        eids_type = F.cat(eids[etype], 0)
        uniq_ids = F.unique(eids_type)
        assert len(uniq_ids) == g.number_of_edges(etype)
    # TODO(zhengda) this doesn't check 'part_id'

123
def verify_graph_feats(g, gpb, part, node_feats, edge_feats):
124
125
    for ntype in g.ntypes:
        ntype_id = g.get_ntype_id(ntype)
126
127
128
129
130
131
132
133
134
135
        inner_node_mask = _get_inner_node_mask(part, ntype_id)
        inner_nids = F.boolean_mask(part.ndata[dgl.NID],inner_node_mask)
        ntype_ids, inner_type_nids = gpb.map_to_per_ntype(inner_nids)
        partid = gpb.nid2partid(inner_type_nids, ntype)
        assert np.all(F.asnumpy(ntype_ids) == ntype_id)
        assert np.all(F.asnumpy(partid) == gpb.partid)

        orig_id = F.boolean_mask(part.ndata['orig_id'], inner_node_mask)
        local_nids = gpb.nid2localnid(inner_type_nids, gpb.partid, ntype)

136
137
138
139
        for name in g.nodes[ntype].data:
            if name in [dgl.NID, 'inner_node']:
                continue
            true_feats = F.gather_row(g.nodes[ntype].data[name], orig_id)
140
            ndata = F.gather_row(node_feats[ntype + '/' + name], local_nids)
141
142
            assert np.all(F.asnumpy(ndata == true_feats))

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    for etype in g.etypes:
        etype_id = g.get_etype_id(etype)
        inner_edge_mask = _get_inner_edge_mask(part, etype_id)
        inner_eids = F.boolean_mask(part.edata[dgl.EID],inner_edge_mask)
        etype_ids, inner_type_eids = gpb.map_to_per_etype(inner_eids)
        partid = gpb.eid2partid(inner_type_eids, etype)
        assert np.all(F.asnumpy(etype_ids) == etype_id)
        assert np.all(F.asnumpy(partid) == gpb.partid)

        orig_id = F.boolean_mask(part.edata['orig_id'], inner_edge_mask)
        local_eids = gpb.eid2localeid(inner_type_eids, gpb.partid, etype)

        for name in g.edges[etype].data:
            if name in [dgl.EID, 'inner_edge']:
                continue
            true_feats = F.gather_row(g.edges[etype].data[name], orig_id)
            edata = F.gather_row(edge_feats[etype + '/' + name], local_eids)
            assert np.all(F.asnumpy(edata == true_feats))

162
def check_hetero_partition(hg, part_method, num_parts=4, num_trainers_per_machine=1):
163
164
165
    hg.nodes['n1'].data['labels'] = F.arange(0, hg.number_of_nodes('n1'))
    hg.nodes['n1'].data['feats'] = F.tensor(np.random.randn(hg.number_of_nodes('n1'), 10), F.float32)
    hg.edges['r1'].data['feats'] = F.tensor(np.random.randn(hg.number_of_edges('r1'), 10), F.float32)
166
    hg.edges['r1'].data['labels'] = F.arange(0, hg.number_of_edges('r1'))
167
168
    num_hops = 1

169
    orig_nids, orig_eids = partition_graph(hg, 'test', num_parts, '/tmp/partition', num_hops=num_hops,
170
171
                                           part_method=part_method, reshuffle=True, return_mapping=True,
                                           num_trainers_per_machine=num_trainers_per_machine)
172
173
174
175
176
177
    assert len(orig_nids) == len(hg.ntypes)
    assert len(orig_eids) == len(hg.etypes)
    for ntype in hg.ntypes:
        assert len(orig_nids[ntype]) == hg.number_of_nodes(ntype)
    for etype in hg.etypes:
        assert len(orig_eids[etype]) == hg.number_of_edges(etype)
178
    parts = []
179
180
    shuffled_labels = []
    shuffled_elabels = []
181
182
    for i in range(num_parts):
        part_g, node_feats, edge_feats, gpb, _, ntypes, etypes = load_partition('/tmp/partition/test.json', i)
183
184
185
186
187
188
189
190
191
192
193
194
        if num_trainers_per_machine > 1:
            for ntype in hg.ntypes:
                name = ntype + '/trainer_id'
                assert name in node_feats
                part_ids = F.floor_div(node_feats[name], num_trainers_per_machine)
                assert np.all(F.asnumpy(part_ids) == i)

            for etype in hg.etypes:
                name = etype + '/trainer_id'
                assert name in edge_feats
                part_ids = F.floor_div(edge_feats[name], num_trainers_per_machine)
                assert np.all(F.asnumpy(part_ids) == i)
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
        # Verify the mapping between the reshuffled IDs and the original IDs.
        # These are partition-local IDs.
        part_src_ids, part_dst_ids = part_g.edges()
        # These are reshuffled global homogeneous IDs.
        part_src_ids = F.gather_row(part_g.ndata[dgl.NID], part_src_ids)
        part_dst_ids = F.gather_row(part_g.ndata[dgl.NID], part_dst_ids)
        part_eids = part_g.edata[dgl.EID]
        # These are reshuffled per-type IDs.
        src_ntype_ids, part_src_ids = gpb.map_to_per_ntype(part_src_ids)
        dst_ntype_ids, part_dst_ids = gpb.map_to_per_ntype(part_dst_ids)
        etype_ids, part_eids = gpb.map_to_per_etype(part_eids)
        # These are original per-type IDs.
        for etype_id, etype in enumerate(hg.etypes):
            part_src_ids1 = F.boolean_mask(part_src_ids, etype_ids == etype_id)
            src_ntype_ids1 = F.boolean_mask(src_ntype_ids, etype_ids == etype_id)
            part_dst_ids1 = F.boolean_mask(part_dst_ids, etype_ids == etype_id)
            dst_ntype_ids1 = F.boolean_mask(dst_ntype_ids, etype_ids == etype_id)
            part_eids1 = F.boolean_mask(part_eids, etype_ids == etype_id)
            assert np.all(F.asnumpy(src_ntype_ids1 == src_ntype_ids1[0]))
            assert np.all(F.asnumpy(dst_ntype_ids1 == dst_ntype_ids1[0]))
            src_ntype = hg.ntypes[F.as_scalar(src_ntype_ids1[0])]
            dst_ntype = hg.ntypes[F.as_scalar(dst_ntype_ids1[0])]
            orig_src_ids1 = F.gather_row(orig_nids[src_ntype], part_src_ids1)
            orig_dst_ids1 = F.gather_row(orig_nids[dst_ntype], part_dst_ids1)
            orig_eids1 = F.gather_row(orig_eids[etype], part_eids1)
            orig_eids2 = hg.edge_ids(orig_src_ids1, orig_dst_ids1, etype=etype)
            assert len(orig_eids1) == len(orig_eids2)
            assert np.all(F.asnumpy(orig_eids1) == F.asnumpy(orig_eids2))
223
        parts.append(part_g)
224
225
226
227
        verify_graph_feats(hg, gpb, part_g, node_feats, edge_feats)

        shuffled_labels.append(node_feats['n1/labels'])
        shuffled_elabels.append(edge_feats['r1/labels'])
228
229
    verify_hetero_graph(hg, parts)

230
231
232
233
234
235
236
237
238
    shuffled_labels = F.asnumpy(F.cat(shuffled_labels, 0))
    shuffled_elabels = F.asnumpy(F.cat(shuffled_elabels, 0))
    orig_labels = np.zeros(shuffled_labels.shape, dtype=shuffled_labels.dtype)
    orig_elabels = np.zeros(shuffled_elabels.shape, dtype=shuffled_elabels.dtype)
    orig_labels[F.asnumpy(orig_nids['n1'])] = shuffled_labels
    orig_elabels[F.asnumpy(orig_eids['r1'])] = shuffled_elabels
    assert np.all(orig_labels == F.asnumpy(hg.nodes['n1'].data['labels']))
    assert np.all(orig_elabels == F.asnumpy(hg.edges['r1'].data['labels']))

239
def check_partition(g, part_method, reshuffle, num_parts=4, num_trainers_per_machine=1):
240
    g.ndata['labels'] = F.arange(0, g.number_of_nodes())
241
242
    g.ndata['feats'] = F.tensor(np.random.randn(g.number_of_nodes(), 10), F.float32)
    g.edata['feats'] = F.tensor(np.random.randn(g.number_of_edges(), 10), F.float32)
243
244
    g.update_all(fn.copy_src('feats', 'msg'), fn.sum('msg', 'h'))
    g.update_all(fn.copy_edge('feats', 'msg'), fn.sum('msg', 'eh'))
245
    num_hops = 2
Da Zheng's avatar
Da Zheng committed
246

247
    orig_nids, orig_eids = partition_graph(g, 'test', num_parts, '/tmp/partition', num_hops=num_hops,
248
249
                                           part_method=part_method, reshuffle=reshuffle, return_mapping=True,
                                           num_trainers_per_machine=num_trainers_per_machine)
Da Zheng's avatar
Da Zheng committed
250
    part_sizes = []
251
252
    shuffled_labels = []
    shuffled_edata = []
253
    for i in range(num_parts):
254
        part_g, node_feats, edge_feats, gpb, _, ntypes, etypes = load_partition('/tmp/partition/test.json', i)
255
256
257
258
259
260
261
262
263
264
265
266
        if num_trainers_per_machine > 1:
            for ntype in g.ntypes:
                name = ntype + '/trainer_id'
                assert name in node_feats
                part_ids = F.floor_div(node_feats[name], num_trainers_per_machine)
                assert np.all(F.asnumpy(part_ids) == i)

            for etype in g.etypes:
                name = etype + '/trainer_id'
                assert name in edge_feats
                part_ids = F.floor_div(edge_feats[name], num_trainers_per_machine)
                assert np.all(F.asnumpy(part_ids) == i)
267
268

        # Check the metadata
Da Zheng's avatar
Da Zheng committed
269
270
271
272
273
274
275
276
277
278
        assert gpb._num_nodes() == g.number_of_nodes()
        assert gpb._num_edges() == g.number_of_edges()

        assert gpb.num_partitions() == num_parts
        gpb_meta = gpb.metadata()
        assert len(gpb_meta) == num_parts
        assert len(gpb.partid2nids(i)) == gpb_meta[i]['num_nodes']
        assert len(gpb.partid2eids(i)) == gpb_meta[i]['num_edges']
        part_sizes.append((gpb_meta[i]['num_nodes'], gpb_meta[i]['num_edges']))

279
280
        nid = F.boolean_mask(part_g.ndata[dgl.NID], part_g.ndata['inner_node'])
        local_nid = gpb.nid2localnid(nid, i)
281
        assert F.dtype(local_nid) in (F.int64, F.int32)
Da Zheng's avatar
Da Zheng committed
282
        assert np.all(F.asnumpy(local_nid) == np.arange(0, len(local_nid)))
283
284
        eid = F.boolean_mask(part_g.edata[dgl.EID], part_g.edata['inner_edge'])
        local_eid = gpb.eid2localeid(eid, i)
285
        assert F.dtype(local_eid) in (F.int64, F.int32)
Da Zheng's avatar
Da Zheng committed
286
        assert np.all(F.asnumpy(local_eid) == np.arange(0, len(local_eid)))
287
288

        # Check the node map.
289
290
291
        local_nodes = F.boolean_mask(part_g.ndata[dgl.NID], part_g.ndata['inner_node'])
        llocal_nodes = F.nonzero_1d(part_g.ndata['inner_node'])
        local_nodes1 = gpb.partid2nids(i)
292
        assert F.dtype(local_nodes1) in (F.int32, F.int64)
293
        assert np.all(np.sort(F.asnumpy(local_nodes)) == np.sort(F.asnumpy(local_nodes1)))
294
        assert np.all(F.asnumpy(llocal_nodes) == np.arange(len(llocal_nodes)))
295
296

        # Check the edge map.
297
        local_edges = F.boolean_mask(part_g.edata[dgl.EID], part_g.edata['inner_edge'])
298
        llocal_edges = F.nonzero_1d(part_g.edata['inner_edge'])
299
        local_edges1 = gpb.partid2eids(i)
300
        assert F.dtype(local_edges1) in (F.int32, F.int64)
301
        assert np.all(np.sort(F.asnumpy(local_edges)) == np.sort(F.asnumpy(local_edges1)))
302
        assert np.all(F.asnumpy(llocal_edges) == np.arange(len(llocal_edges)))
303

304
305
306
307
308
309
310
311
312
313
314
315
        # Verify the mapping between the reshuffled IDs and the original IDs.
        part_src_ids, part_dst_ids = part_g.edges()
        part_src_ids = F.gather_row(part_g.ndata[dgl.NID], part_src_ids)
        part_dst_ids = F.gather_row(part_g.ndata[dgl.NID], part_dst_ids)
        part_eids = part_g.edata[dgl.EID]
        orig_src_ids = F.gather_row(orig_nids, part_src_ids)
        orig_dst_ids = F.gather_row(orig_nids, part_dst_ids)
        orig_eids1 = F.gather_row(orig_eids, part_eids)
        orig_eids2 = g.edge_ids(orig_src_ids, orig_dst_ids)
        assert F.shape(orig_eids1)[0] == F.shape(orig_eids2)[0]
        assert np.all(F.asnumpy(orig_eids1) == F.asnumpy(orig_eids2))

316
317
318
319
320
321
322
323
324
        if reshuffle:
            part_g.ndata['feats'] = F.gather_row(g.ndata['feats'], part_g.ndata['orig_id'])
            part_g.edata['feats'] = F.gather_row(g.edata['feats'], part_g.edata['orig_id'])
            # when we read node data from the original global graph, we should use orig_id.
            local_nodes = F.boolean_mask(part_g.ndata['orig_id'], part_g.ndata['inner_node'])
            local_edges = F.boolean_mask(part_g.edata['orig_id'], part_g.edata['inner_edge'])
        else:
            part_g.ndata['feats'] = F.gather_row(g.ndata['feats'], part_g.ndata[dgl.NID])
            part_g.edata['feats'] = F.gather_row(g.edata['feats'], part_g.edata[dgl.NID])
325

326
327
328
329
330
331
        part_g.update_all(fn.copy_src('feats', 'msg'), fn.sum('msg', 'h'))
        part_g.update_all(fn.copy_edge('feats', 'msg'), fn.sum('msg', 'eh'))
        assert F.allclose(F.gather_row(g.ndata['h'], local_nodes),
                          F.gather_row(part_g.ndata['h'], llocal_nodes))
        assert F.allclose(F.gather_row(g.ndata['eh'], local_nodes),
                          F.gather_row(part_g.ndata['eh'], llocal_nodes))
332
333

        for name in ['labels', 'feats']:
334
335
            assert '_N/' + name in node_feats
            assert node_feats['_N/' + name].shape[0] == len(local_nodes)
336
337
338
            true_feats = F.gather_row(g.ndata[name], local_nodes)
            ndata = F.gather_row(node_feats['_N/' + name], local_nid)
            assert np.all(F.asnumpy(true_feats) == F.asnumpy(ndata))
339
        for name in ['feats']:
340
341
            assert '_E/' + name in edge_feats
            assert edge_feats['_E/' + name].shape[0] == len(local_edges)
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
            true_feats = F.gather_row(g.edata[name], local_edges)
            edata = F.gather_row(edge_feats['_E/' + name], local_eid)
            assert np.all(F.asnumpy(true_feats) == F.asnumpy(edata))

        # This only works if node/edge IDs are shuffled.
        if reshuffle:
            shuffled_labels.append(node_feats['_N/labels'])
            shuffled_edata.append(edge_feats['_E/feats'])

    # Verify that we can reconstruct node/edge data for original IDs.
    if reshuffle:
        shuffled_labels = F.asnumpy(F.cat(shuffled_labels, 0))
        shuffled_edata = F.asnumpy(F.cat(shuffled_edata, 0))
        orig_labels = np.zeros(shuffled_labels.shape, dtype=shuffled_labels.dtype)
        orig_edata = np.zeros(shuffled_edata.shape, dtype=shuffled_edata.dtype)
        orig_labels[F.asnumpy(orig_nids)] = shuffled_labels
        orig_edata[F.asnumpy(orig_eids)] = shuffled_edata
        assert np.all(orig_labels == F.asnumpy(g.ndata['labels']))
        assert np.all(orig_edata == F.asnumpy(g.edata['feats']))
361

Da Zheng's avatar
Da Zheng committed
362
363
364
365
366
367
368
369
    if reshuffle:
        node_map = []
        edge_map = []
        for i, (num_nodes, num_edges) in enumerate(part_sizes):
            node_map.append(np.ones(num_nodes) * i)
            edge_map.append(np.ones(num_edges) * i)
        node_map = np.concatenate(node_map)
        edge_map = np.concatenate(edge_map)
370
371
372
373
374
375
        nid2pid = gpb.nid2partid(F.arange(0, len(node_map)))
        assert F.dtype(nid2pid) in (F.int32, F.int64)
        assert np.all(F.asnumpy(nid2pid) == node_map)
        eid2pid = gpb.eid2partid(F.arange(0, len(edge_map)))
        assert F.dtype(eid2pid) in (F.int32, F.int64)
        assert np.all(F.asnumpy(eid2pid) == edge_map)
Da Zheng's avatar
Da Zheng committed
376

377
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
Da Zheng's avatar
Da Zheng committed
378
def test_partition():
379
    g = create_random_graph(1000)
380
    check_partition(g, 'metis', False)
381
    check_partition(g, 'metis', True)
382
383
    check_partition(g, 'metis', True, 4, 8)
    check_partition(g, 'metis', True, 1, 8)
384
    check_partition(g, 'random', False)
385
    check_partition(g, 'random', True)
386

387
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
388
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support some of operations in DistGraph")
389
def test_hetero_partition():
390
391
    hg = create_random_hetero()
    check_hetero_partition(hg, 'metis')
392
393
    check_hetero_partition(hg, 'metis', 1, 8)
    check_hetero_partition(hg, 'metis', 4, 8)
394
    check_hetero_partition(hg, 'random')
Da Zheng's avatar
Da Zheng committed
395

396
397

if __name__ == '__main__':
Da Zheng's avatar
Da Zheng committed
398
    os.makedirs('/tmp/partition', exist_ok=True)
399
    test_partition()
400
    test_hetero_partition()