model_sparse.py 6 KB
Newer Older
1
2
3
4
5
6
7
8
import pickle
import argparse
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torchtext
import dgl
9
import os
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import tqdm

import layers
import sampler as sampler_module
import evaluation

class PinSAGEModel(nn.Module):
    def __init__(self, full_graph, ntype, textsets, hidden_dims, n_layers):
        super().__init__()

        self.proj = layers.LinearProjector(full_graph, ntype, textsets, hidden_dims)
        self.sage = layers.SAGENet(hidden_dims, n_layers)
        self.scorer = layers.ItemToItemScorer(full_graph, ntype)

    def forward(self, pos_graph, neg_graph, blocks, item_emb):
        h_item = self.get_repr(blocks, item_emb)
        pos_score = self.scorer(pos_graph, h_item)
        neg_score = self.scorer(neg_graph, h_item)
        return (neg_score - pos_score + 1).clamp(min=0)

    def get_repr(self, blocks, item_emb):
        # project features
        h_item = self.proj(blocks[0].srcdata)
        h_item_dst = self.proj(blocks[-1].dstdata)

        # add to the item embedding itself
        h_item = h_item + item_emb(blocks[0].srcdata[dgl.NID].cpu()).to(h_item)
        h_item_dst = h_item_dst + item_emb(blocks[-1].dstdata[dgl.NID].cpu()).to(h_item_dst)

        return h_item_dst + self.sage(blocks, h_item)

def train(dataset, args):
    g = dataset['train-graph']
    val_matrix = dataset['val-matrix'].tocsr()
    test_matrix = dataset['test-matrix'].tocsr()
    item_texts = dataset['item-texts']
    user_ntype = dataset['user-type']
    item_ntype = dataset['item-type']
    user_to_item_etype = dataset['user-to-item-type']
    timestamp = dataset['timestamp-edge-column']

    device = torch.device(args.device)

    # Prepare torchtext dataset and vocabulary
    fields = {}
    examples = []
    for key, texts in item_texts.items():
        fields[key] = torchtext.data.Field(include_lengths=True, lower=True, batch_first=True)
    for i in range(g.number_of_nodes(item_ntype)):
        example = torchtext.data.Example.fromlist(
            [item_texts[key][i] for key in item_texts.keys()],
            [(key, fields[key]) for key in item_texts.keys()])
        examples.append(example)
    textset = torchtext.data.Dataset(examples, fields)
    for key, field in fields.items():
        field.build_vocab(getattr(textset, key))
        #field.build_vocab(getattr(textset, key), vectors='fasttext.simple.300d')

    # Sampler
    batch_sampler = sampler_module.ItemToItemBatchSampler(
        g, user_ntype, item_ntype, args.batch_size)
    neighbor_sampler = sampler_module.NeighborSampler(
        g, user_ntype, item_ntype, args.random_walk_length,
        args.random_walk_restart_prob, args.num_random_walks, args.num_neighbors,
        args.num_layers)
    collator = sampler_module.PinSAGECollator(neighbor_sampler, g, item_ntype, textset)
    dataloader = DataLoader(
        batch_sampler,
        collate_fn=collator.collate_train,
        num_workers=args.num_workers)
    dataloader_test = DataLoader(
        torch.arange(g.number_of_nodes(item_ntype)),
        batch_size=args.batch_size,
        collate_fn=collator.collate_test,
        num_workers=args.num_workers)
    dataloader_it = iter(dataloader)

    # Model
    model = PinSAGEModel(g, item_ntype, textset, args.hidden_dims, args.num_layers).to(device)
    item_emb = nn.Embedding(g.number_of_nodes(item_ntype), args.hidden_dims, sparse=True)
    # Optimizer
    opt = torch.optim.Adam(model.parameters(), lr=args.lr)
    opt_emb = torch.optim.SparseAdam(item_emb.parameters(), lr=args.lr)

    # For each batch of head-tail-negative triplets...
    for epoch_id in range(args.num_epochs):
        model.train()
        for batch_id in tqdm.trange(args.batches_per_epoch):
            pos_graph, neg_graph, blocks = next(dataloader_it)
            # Copy to GPU
            for i in range(len(blocks)):
                blocks[i] = blocks[i].to(device)
            pos_graph = pos_graph.to(device)
            neg_graph = neg_graph.to(device)

            loss = model(pos_graph, neg_graph, blocks, item_emb).mean()
            opt.zero_grad()
            opt_emb.zero_grad()
            loss.backward()
            opt.step()
            opt_emb.step()

        # Evaluate
        model.eval()
        with torch.no_grad():
            item_batches = torch.arange(g.number_of_nodes(item_ntype)).split(args.batch_size)
            h_item_batches = []
            for blocks in tqdm.tqdm(dataloader_test):
                for i in range(len(blocks)):
                    blocks[i] = blocks[i].to(device)

                h_item_batches.append(model.get_repr(blocks, item_emb))
            h_item = torch.cat(h_item_batches, 0)

            print(evaluation.evaluate_nn(dataset, h_item, args.k, args.batch_size))

if __name__ == '__main__':
    # Arguments
    parser = argparse.ArgumentParser()
    parser.add_argument('dataset_path', type=str)
    parser.add_argument('--random-walk-length', type=int, default=2)
    parser.add_argument('--random-walk-restart-prob', type=float, default=0.5)
    parser.add_argument('--num-random-walks', type=int, default=10)
    parser.add_argument('--num-neighbors', type=int, default=3)
    parser.add_argument('--num-layers', type=int, default=2)
    parser.add_argument('--hidden-dims', type=int, default=16)
    parser.add_argument('--batch-size', type=int, default=32)
    parser.add_argument('--device', type=str, default='cpu')        # can also be "cuda:0"
    parser.add_argument('--num-epochs', type=int, default=1)
    parser.add_argument('--batches-per-epoch', type=int, default=20000)
    parser.add_argument('--num-workers', type=int, default=0)
    parser.add_argument('--lr', type=float, default=3e-5)
    parser.add_argument('-k', type=int, default=10)
    args = parser.parse_args()

    # Load dataset
146
147
    data_info_path = os.path.join(args.dataset_path, 'data.pkl')
    with open(data_info_path, 'rb') as f:
148
        dataset = pickle.load(f)
149
150
151
    train_g_path = os.path.join(args.dataset_path, 'train_g.bin')
    g_list, _ = dgl.load_graphs(train_g_path)
    dataset['train-graph'] = g_list[0]
152
    train(dataset, args)