test_sparse_matrix.py 13.8 KB
Newer Older
1
2
import sys

3
import backend as F
4
5
import pytest
import torch
6

7
from dgl.sparse import (
8
9
10
11
12
    create_from_coo,
    create_from_csc,
    create_from_csr,
    val_like,
)
13

Mufei Li's avatar
Mufei Li committed
14
# TODO(#4818): Skipping tests on win.
15
16
17
if not sys.platform.startswith("linux"):
    pytest.skip("skipping tests on win", allow_module_level=True)

18

19
@pytest.mark.parametrize("dense_dim", [None, 4])
20
@pytest.mark.parametrize("row", [(0, 0, 1, 2), (0, 1, 2, 4)])
21
@pytest.mark.parametrize("col", [(0, 1, 2, 2), (1, 3, 3, 4)])
22
@pytest.mark.parametrize("shape", [None, (5, 5), (5, 6)])
23
24
25
26
def test_create_from_coo(dense_dim, row, col, shape):
    val_shape = (len(row),)
    if dense_dim is not None:
        val_shape += (dense_dim,)
27
28
29
30
    ctx = F.ctx()
    val = torch.randn(val_shape).to(ctx)
    row = torch.tensor(row).to(ctx)
    col = torch.tensor(col).to(ctx)
31
32
33
34
    mat = create_from_coo(row, col, val, shape)

    if shape is None:
        shape = (torch.max(row).item() + 1, torch.max(col).item() + 1)
35

36
37
    mat_row, mat_col = mat.coo()
    mat_val = mat.val
38
39
40
41
42
43
44
45
46
47

    assert mat.shape == shape
    assert mat.nnz == row.numel()
    assert mat.dtype == val.dtype
    assert torch.allclose(mat_val, val)
    assert torch.allclose(mat_row, row)
    assert torch.allclose(mat_col, col)


@pytest.mark.parametrize("dense_dim", [None, 4])
48
@pytest.mark.parametrize("indptr", [(0, 0, 1, 4), (0, 1, 2, 4)])
49
50
51
52
53
54
@pytest.mark.parametrize("indices", [(0, 1, 2, 3), (1, 2, 3, 4)])
@pytest.mark.parametrize("shape", [None, (3, 5)])
def test_create_from_csr(dense_dim, indptr, indices, shape):
    val_shape = (len(indices),)
    if dense_dim is not None:
        val_shape += (dense_dim,)
55
56
57
58
    ctx = F.ctx()
    val = torch.randn(val_shape).to(ctx)
    indptr = torch.tensor(indptr).to(ctx)
    indices = torch.tensor(indices).to(ctx)
59
60
61
62
63
64
65
66
67
    mat = create_from_csr(indptr, indices, val, shape)

    if shape is None:
        shape = (indptr.numel() - 1, torch.max(indices).item() + 1)

    assert mat.device == val.device
    assert mat.shape == shape
    assert mat.nnz == indices.numel()
    assert mat.dtype == val.dtype
68
69
    mat_indptr, mat_indices, value_indices = mat.csr()
    mat_val = mat.val if value_indices is None else mat.val[value_indices]
70
71
72
73
    assert torch.allclose(mat_indptr, indptr)
    assert torch.allclose(mat_indices, indices)
    assert torch.allclose(mat_val, val)

74

75
@pytest.mark.parametrize("dense_dim", [None, 4])
76
@pytest.mark.parametrize("indptr", [(0, 0, 1, 4), (0, 1, 2, 4)])
77
78
79
80
81
82
@pytest.mark.parametrize("indices", [(0, 1, 2, 3), (1, 2, 3, 4)])
@pytest.mark.parametrize("shape", [None, (5, 3)])
def test_create_from_csc(dense_dim, indptr, indices, shape):
    val_shape = (len(indices),)
    if dense_dim is not None:
        val_shape += (dense_dim,)
83
84
85
86
    ctx = F.ctx()
    val = torch.randn(val_shape).to(ctx)
    indptr = torch.tensor(indptr).to(ctx)
    indices = torch.tensor(indices).to(ctx)
87
88
89
90
91
92
93
94
95
    mat = create_from_csc(indptr, indices, val, shape)

    if shape is None:
        shape = (torch.max(indices).item() + 1, indptr.numel() - 1)

    assert mat.device == val.device
    assert mat.shape == shape
    assert mat.nnz == indices.numel()
    assert mat.dtype == val.dtype
96
97
    mat_indptr, mat_indices, value_indices = mat.csc()
    mat_val = mat.val if value_indices is None else mat.val[value_indices]
98
99
100
    assert torch.allclose(mat_indptr, indptr)
    assert torch.allclose(mat_indices, indices)
    assert torch.allclose(mat_val, val)
101

102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
@pytest.mark.parametrize("val_shape", [(3), (3, 2)])
def test_dense(val_shape):
    ctx = F.ctx()

    row = torch.tensor([1, 1, 2]).to(ctx)
    col = torch.tensor([2, 4, 3]).to(ctx)
    val = torch.randn(val_shape).to(ctx)
    A = create_from_coo(row, col, val)
    A_dense = A.dense()

    shape = A.shape + val.shape[1:]
    mat = torch.zeros(shape, device=ctx)
    mat[row, col] = val
    assert torch.allclose(A_dense, mat)

118

czkkkkkk's avatar
czkkkkkk committed
119
@pytest.mark.parametrize("dense_dim", [None, 4])
120
@pytest.mark.parametrize("indptr", [(0, 0, 1, 4), (0, 1, 2, 4)])
czkkkkkk's avatar
czkkkkkk committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
@pytest.mark.parametrize("indices", [(0, 1, 2, 3), (1, 4, 3, 2)])
@pytest.mark.parametrize("shape", [None, (3, 5)])
def test_csr_to_coo(dense_dim, indptr, indices, shape):
    ctx = F.ctx()
    val_shape = (len(indices),)
    if dense_dim is not None:
        val_shape += (dense_dim,)
    val = torch.randn(val_shape).to(ctx)
    indptr = torch.tensor(indptr).to(ctx)
    indices = torch.tensor(indices).to(ctx)
    mat = create_from_csr(indptr, indices, val, shape)

    if shape is None:
        shape = (indptr.numel() - 1, torch.max(indices).item() + 1)

136
137
138
139
140
    row = (
        torch.arange(0, indptr.shape[0] - 1)
        .to(ctx)
        .repeat_interleave(torch.diff(indptr))
    )
czkkkkkk's avatar
czkkkkkk committed
141
    col = indices
142
143
    mat_row, mat_col = mat.coo()
    mat_val = mat.val
czkkkkkk's avatar
czkkkkkk committed
144
145
146
147
148
149
150
151
152

    assert mat.shape == shape
    assert mat.nnz == row.numel()
    assert mat.device == row.device
    assert mat.dtype == val.dtype
    assert torch.allclose(mat_val, val)
    assert torch.allclose(mat_row, row)
    assert torch.allclose(mat_col, col)

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

@pytest.mark.parametrize("dense_dim", [None, 4])
@pytest.mark.parametrize("indptr", [(0, 0, 1, 4), (0, 1, 2, 4)])
@pytest.mark.parametrize("indices", [(0, 1, 2, 3), (1, 4, 3, 2)])
@pytest.mark.parametrize("shape", [None, (5, 3)])
def test_csc_to_coo(dense_dim, indptr, indices, shape):
    ctx = F.ctx()
    val_shape = (len(indices),)
    if dense_dim is not None:
        val_shape += (dense_dim,)
    val = torch.randn(val_shape).to(ctx)
    indptr = torch.tensor(indptr).to(ctx)
    indices = torch.tensor(indices).to(ctx)
    mat = create_from_csc(indptr, indices, val, shape)

    if shape is None:
        shape = (torch.max(indices).item() + 1, indptr.numel() - 1)

    col = (
        torch.arange(0, indptr.shape[0] - 1)
        .to(ctx)
        .repeat_interleave(torch.diff(indptr))
    )
    row = indices
    mat_row, mat_col = mat.coo()
    mat_val = mat.val

    assert mat.shape == shape
    assert mat.nnz == row.numel()
    assert mat.device == row.device
    assert mat.dtype == val.dtype
    assert torch.allclose(mat_val, val)
    assert torch.allclose(mat_row, row)
    assert torch.allclose(mat_col, col)


def _scatter_add(a, index, v=1):
    index = index.tolist()
    for i in index:
        a[i] += v
    return a


@pytest.mark.parametrize("dense_dim", [None, 4])
@pytest.mark.parametrize("row", [(0, 0, 1, 2), (0, 1, 2, 4)])
@pytest.mark.parametrize("col", [(0, 1, 2, 2), (1, 3, 3, 4)])
@pytest.mark.parametrize("shape", [None, (5, 5), (5, 6)])
def test_coo_to_csr(dense_dim, row, col, shape):
    val_shape = (len(row),)
    if dense_dim is not None:
        val_shape += (dense_dim,)
    ctx = F.ctx()
    val = torch.randn(val_shape).to(ctx)
    row = torch.tensor(row).to(ctx)
    col = torch.tensor(col).to(ctx)
    mat = create_from_coo(row, col, val, shape)

    if shape is None:
        shape = (torch.max(row).item() + 1, torch.max(col).item() + 1)

    mat_indptr, mat_indices, value_indices = mat.csr()
    mat_val = mat.val if value_indices is None else mat.val[value_indices]
    indptr = torch.zeros(shape[0] + 1).to(ctx)
    indptr = _scatter_add(indptr, row + 1)
    indptr = torch.cumsum(indptr, 0).long()
    indices = col

    assert mat.shape == shape
    assert mat.nnz == row.numel()
    assert mat.dtype == val.dtype
    assert torch.allclose(mat_val, val)
    assert torch.allclose(mat_indptr, indptr)
    assert torch.allclose(mat_indices, indices)


@pytest.mark.parametrize("dense_dim", [None, 4])
@pytest.mark.parametrize("indptr", [(0, 0, 1, 4), (0, 1, 2, 4)])
@pytest.mark.parametrize("indices", [(0, 1, 2, 3), (1, 4, 3, 2)])
@pytest.mark.parametrize("shape", [None, (5, 3)])
def test_csc_to_csr(dense_dim, indptr, indices, shape):
    ctx = F.ctx()
    val_shape = (len(indices),)
    if dense_dim is not None:
        val_shape += (dense_dim,)
    val = torch.randn(val_shape).to(ctx)
    indptr = torch.tensor(indptr).to(ctx)
    indices = torch.tensor(indices).to(ctx)
    mat = create_from_csc(indptr, indices, val, shape)
    mat_indptr, mat_indices, value_indices = mat.csr()
    mat_val = mat.val if value_indices is None else mat.val[value_indices]

    if shape is None:
        shape = (torch.max(indices).item() + 1, indptr.numel() - 1)

    col = (
        torch.arange(0, indptr.shape[0] - 1)
        .to(ctx)
        .repeat_interleave(torch.diff(indptr))
    )
    row = indices
    row, sort_index = row.sort(stable=True)
    col = col[sort_index]
    val = val[sort_index]
    indptr = torch.zeros(shape[0] + 1).to(ctx)
    indptr = _scatter_add(indptr, row + 1)
    indptr = torch.cumsum(indptr, 0).long()
    indices = col

    assert mat.shape == shape
    assert mat.nnz == row.numel()
    assert mat.device == row.device
    assert mat.dtype == val.dtype
    assert torch.allclose(mat_val, val)
    assert torch.allclose(mat_indptr, indptr)
    assert torch.allclose(mat_indices, indices)


@pytest.mark.parametrize("dense_dim", [None, 4])
@pytest.mark.parametrize("row", [(0, 0, 1, 2), (0, 1, 2, 4)])
@pytest.mark.parametrize("col", [(0, 1, 2, 2), (1, 3, 3, 4)])
@pytest.mark.parametrize("shape", [None, (5, 5), (5, 6)])
def test_coo_to_csc(dense_dim, row, col, shape):

    val_shape = (len(row),)
    if dense_dim is not None:
        val_shape += (dense_dim,)
    ctx = F.ctx()
    val = torch.randn(val_shape).to(ctx)
    row = torch.tensor(row).to(ctx)
    col = torch.tensor(col).to(ctx)
    mat = create_from_coo(row, col, val, shape)

    if shape is None:
        shape = (torch.max(row).item() + 1, torch.max(col).item() + 1)

    mat_indptr, mat_indices, value_indices = mat.csc()
    mat_val = mat.val if value_indices is None else mat.val[value_indices]
    indptr = torch.zeros(shape[1] + 1).to(ctx)
    _scatter_add(indptr, col + 1)
    indptr = torch.cumsum(indptr, 0).long()
    indices = row

    assert mat.shape == shape
    assert mat.nnz == row.numel()
    assert mat.dtype == val.dtype
    assert torch.allclose(mat_val, val)
    assert torch.allclose(mat_indptr, indptr)
    assert torch.allclose(mat_indices, indices)


@pytest.mark.parametrize("dense_dim", [None, 4])
@pytest.mark.parametrize("indptr", [(0, 0, 1, 4), (0, 1, 2, 4)])
@pytest.mark.parametrize("indices", [(0, 1, 2, 3), (1, 2, 3, 4)])
@pytest.mark.parametrize("shape", [None, (3, 5)])
def test_csr_to_csc(dense_dim, indptr, indices, shape):
    val_shape = (len(indices),)
    if dense_dim is not None:
        val_shape += (dense_dim,)
    ctx = F.ctx()
    val = torch.randn(val_shape).to(ctx)
    indptr = torch.tensor(indptr).to(ctx)
    indices = torch.tensor(indices).to(ctx)
    mat = create_from_csr(indptr, indices, val, shape)
    mat_indptr, mat_indices, value_indices = mat.csc()
    mat_val = mat.val if value_indices is None else mat.val[value_indices]

    if shape is None:
        shape = (indptr.numel() - 1, torch.max(indices).item() + 1)

    row = (
        torch.arange(0, indptr.shape[0] - 1)
        .to(ctx)
        .repeat_interleave(torch.diff(indptr))
    )

    col = indices
    col, sort_index = col.sort(stable=True)
    row = row[sort_index]
    val = val[sort_index]
    indptr = torch.zeros(shape[1] + 1).to(ctx)
    indptr = _scatter_add(indptr, col + 1)
    indptr = torch.cumsum(indptr, 0).long()
    indices = row

    assert mat.shape == shape
    assert mat.nnz == row.numel()
    assert mat.device == row.device
    assert mat.dtype == val.dtype
    assert torch.allclose(mat_val, val)
    assert torch.allclose(mat_indptr, indptr)
    assert torch.allclose(mat_indices, indices)
344

345

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
@pytest.mark.parametrize("val_shape", [(3), (3, 2)])
@pytest.mark.parametrize("shape", [(3, 5), (5, 5)])
def test_val_like(val_shape, shape):
    def check_val_like(A, B):
        assert A.shape == B.shape
        assert A.nnz == B.nnz
        assert torch.allclose(torch.stack(A.coo()), torch.stack(B.coo()))
        assert A.val.device == B.val.device

    ctx = F.ctx()

    # COO
    row = torch.tensor([1, 1, 2]).to(ctx)
    col = torch.tensor([2, 4, 3]).to(ctx)
    val = torch.randn(3).to(ctx)
    coo_A = create_from_coo(row, col, val, shape)
    new_val = torch.randn(val_shape).to(ctx)
    coo_B = val_like(coo_A, new_val)
    check_val_like(coo_A, coo_B)

    # CSR
    indptr, indices, _ = coo_A.csr()
    csr_A = create_from_csr(indptr, indices, val, shape)
    csr_B = val_like(csr_A, new_val)
    check_val_like(csr_A, csr_B)

    # CSC
    indptr, indices, _ = coo_A.csc()
    csc_A = create_from_csc(indptr, indices, val, shape)
    csc_B = val_like(csc_A, new_val)
    check_val_like(csc_A, csc_B)
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420


def test_coalesce():
    ctx = F.ctx()

    row = torch.tensor([1, 0, 0, 0, 1]).to(ctx)
    col = torch.tensor([1, 1, 1, 2, 2]).to(ctx)
    val = torch.arange(len(row)).to(ctx)
    A = create_from_coo(row, col, val, (4, 4))

    assert A.has_duplicate()

    A_coalesced = A.coalesce()

    assert A_coalesced.nnz == 4
    assert A_coalesced.shape == (4, 4)
    assert list(A_coalesced.row) == [0, 0, 1, 1]
    assert list(A_coalesced.col) == [1, 2, 1, 2]
    # Values of duplicate indices are added together.
    assert list(A_coalesced.val) == [3, 3, 0, 4]
    assert not A_coalesced.has_duplicate()


def test_has_duplicate():
    ctx = F.ctx()

    row = torch.tensor([1, 0, 0, 0, 1]).to(ctx)
    col = torch.tensor([1, 1, 1, 2, 2]).to(ctx)
    val = torch.arange(len(row)).to(ctx)
    shape = (4, 4)

    # COO
    coo_A = create_from_coo(row, col, val, shape)
    assert coo_A.has_duplicate()

    # CSR
    indptr, indices, _ = coo_A.csr()
    csr_A = create_from_csr(indptr, indices, val, shape)
    assert csr_A.has_duplicate()

    # CSC
    indptr, indices, _ = coo_A.csc()
    csc_A = create_from_csc(indptr, indices, val, shape)
    assert csc_A.has_duplicate()
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438


def test_print():
    ctx = F.ctx()

    # basic
    row = torch.tensor([1, 1, 3]).to(ctx)
    col = torch.tensor([2, 1, 3]).to(ctx)
    val = torch.tensor([1.0, 1.0, 2.0]).to(ctx)
    A = create_from_coo(row, col, val)
    print(A)

    # vector-shape non zero
    row = torch.tensor([1, 1, 3]).to(ctx)
    col = torch.tensor([2, 1, 3]).to(ctx)
    val = torch.randn(3, 2).to(ctx)
    A = create_from_coo(row, col, val)
    print(A)