"...pytorch/graphsage/advanced/train_sampling_unsupervised.py" did not exist on "7993a4d8e3d7919ea94445e0b021e46a481a41f3"
test_matmul.py 4.32 KB
Newer Older
1
2
3
4
5
6
import sys

import backend as F
import pytest
import torch

7
from dgl.sparse import bspmm, create_from_coo, val_like
8
9
10

from .utils import (
    clone_detach_and_grad,
11
    dense_mask,
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
    rand_coo,
    rand_csc,
    rand_csr,
    sparse_matrix_to_dense,
    sparse_matrix_to_torch_sparse,
)

# TODO(#4818): Skipping tests on win.
if not sys.platform.startswith("linux"):
    pytest.skip("skipping tests on win", allow_module_level=True)


@pytest.mark.parametrize("create_func", [rand_coo, rand_csr, rand_csc])
@pytest.mark.parametrize("shape", [(2, 7), (5, 2)])
@pytest.mark.parametrize("nnz", [1, 10])
@pytest.mark.parametrize("out_dim", [None, 10])
def test_spmm(create_func, shape, nnz, out_dim):
    dev = F.ctx()
    A = create_func(shape, nnz, dev)
    if out_dim is not None:
        X = torch.randn(shape[1], out_dim, requires_grad=True, device=dev)
    else:
        X = torch.randn(shape[1], requires_grad=True, device=dev)

    sparse_result = A @ X
    grad = torch.randn_like(sparse_result)
    sparse_result.backward(grad)

40
    adj = sparse_matrix_to_dense(A)
41
    XX = clone_detach_and_grad(X)
42
    dense_result = torch.matmul(adj, XX)
43
    if out_dim is None:
44
45
46
        dense_result = dense_result.view(-1)
    dense_result.backward(grad)
    assert torch.allclose(sparse_result, dense_result, atol=1e-05)
47
    assert torch.allclose(X.grad, XX.grad, atol=1e-05)
48
    assert torch.allclose(
49
        dense_mask(adj.grad, A),
50
        sparse_matrix_to_dense(val_like(A, A.val.grad)),
51
        atol=1e-05,
52
    )
53
54


55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
@pytest.mark.parametrize("create_func", [rand_coo, rand_csr, rand_csc])
@pytest.mark.parametrize("shape", [(2, 7), (5, 2)])
@pytest.mark.parametrize("nnz", [1, 10])
def test_bspmm(create_func, shape, nnz):
    dev = F.ctx()
    A = create_func(shape, nnz, dev, 2)
    X = torch.randn(shape[1], 10, 2, requires_grad=True, device=dev)

    sparse_result = bspmm(A, X)
    grad = torch.randn_like(sparse_result)
    sparse_result.backward(grad)

    XX = clone_detach_and_grad(X)
    torch_A = A.dense().clone().detach().requires_grad_()
    torch_result = torch_A.permute(2, 0, 1) @ XX.permute(2, 0, 1)

    torch_result.backward(grad.permute(2, 0, 1))
    assert torch.allclose(
        sparse_result.permute(2, 0, 1), torch_result, atol=1e-05
    )
    assert torch.allclose(X.grad, XX.grad, atol=1e-05)
    assert torch.allclose(
        dense_mask(torch_A.grad, A),
        sparse_matrix_to_dense(val_like(A, A.val.grad)),
        atol=1e-05,
    )


83
84
85
86
87
88
@pytest.mark.parametrize("create_func1", [rand_coo, rand_csr, rand_csc])
@pytest.mark.parametrize("create_func2", [rand_coo, rand_csr, rand_csc])
@pytest.mark.parametrize("shape_n_m", [(5, 5), (5, 6)])
@pytest.mark.parametrize("shape_k", [3, 4])
@pytest.mark.parametrize("nnz1", [1, 10])
@pytest.mark.parametrize("nnz2", [1, 10])
89
def test_spspmm(create_func1, create_func2, shape_n_m, shape_k, nnz1, nnz2):
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    dev = F.ctx()
    shape1 = shape_n_m
    shape2 = (shape_n_m[1], shape_k)
    A1 = create_func1(shape1, nnz1, dev)
    A2 = create_func2(shape2, nnz2, dev)
    A3 = A1 @ A2
    grad = torch.randn_like(A3.val)
    A3.val.backward(grad)

    torch_A1 = sparse_matrix_to_torch_sparse(A1)
    torch_A2 = sparse_matrix_to_torch_sparse(A2)
    torch_A3 = torch.sparse.mm(torch_A1, torch_A2)
    torch_A3_grad = sparse_matrix_to_torch_sparse(A3, grad)
    torch_A3.backward(torch_A3_grad)

    with torch.no_grad():
        assert torch.allclose(A3.dense(), torch_A3.to_dense(), atol=1e-05)
        assert torch.allclose(
            val_like(A1, A1.val.grad).dense(),
            torch_A1.grad.to_dense(),
            atol=1e-05,
        )
        assert torch.allclose(
            val_like(A2, A2.val.grad).dense(),
            torch_A2.grad.to_dense(),
            atol=1e-05,
        )
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146


def test_spspmm_duplicate():
    dev = F.ctx()

    row = torch.tensor([1, 0, 0, 0, 1]).to(dev)
    col = torch.tensor([1, 1, 1, 2, 2]).to(dev)
    val = torch.randn(len(row)).to(dev)
    shape = (4, 4)
    A1 = create_from_coo(row, col, val, shape)

    row = torch.tensor([1, 0, 0, 1]).to(dev)
    col = torch.tensor([1, 1, 2, 2]).to(dev)
    val = torch.randn(len(row)).to(dev)
    shape = (4, 4)
    A2 = create_from_coo(row, col, val, shape)

    try:
        A1 @ A2
    except:
        pass
    else:
        assert False, "Should raise error."

    try:
        A2 @ A1
    except:
        pass
    else:
        assert False, "Should raise error."