train_lightning.py 7.64 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
import dgl
import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import dgl.nn.pytorch as dglnn
import time
import argparse
import tqdm
import glob
import os
13
import sys
14
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from load_graph import load_reddit, inductive_split, load_ogb

from torchmetrics import Accuracy
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning import LightningDataModule, LightningModule, Trainer
from model import SAGE

class SAGELightning(LightningModule):
    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout,
                 lr):
        super().__init__()
        self.save_hyperparameters()
        self.module = SAGE(in_feats, n_hidden, n_classes, n_layers, activation, dropout)
        self.lr = lr
        # The usage of `train_acc` and `val_acc` is the recommended practice from now on as per
        # https://torchmetrics.readthedocs.io/en/latest/pages/lightning.html
        self.train_acc = Accuracy()
        self.val_acc = Accuracy()

    def training_step(self, batch, batch_idx):
        input_nodes, output_nodes, mfgs = batch
        mfgs = [mfg.int().to(device) for mfg in mfgs]
        batch_inputs = mfgs[0].srcdata['features']
        batch_labels = mfgs[-1].dstdata['labels']
        batch_pred = self.module(mfgs, batch_inputs)
        loss = F.cross_entropy(batch_pred, batch_labels)
        self.train_acc(th.softmax(batch_pred, 1), batch_labels)
        self.log('train_acc', self.train_acc, prog_bar=True, on_step=True, on_epoch=False)
        return loss

    def validation_step(self, batch, batch_idx):
        input_nodes, output_nodes, mfgs = batch
        mfgs = [mfg.int().to(device) for mfg in mfgs]
        batch_inputs = mfgs[0].srcdata['features']
        batch_labels = mfgs[-1].dstdata['labels']
        batch_pred = self.module(mfgs, batch_inputs)
        self.val_acc(th.softmax(batch_pred, 1), batch_labels)
        self.log('val_acc', self.val_acc, prog_bar=True, on_step=True, on_epoch=True, sync_dist=True)

    def configure_optimizers(self):
        optimizer = th.optim.Adam(self.parameters(), lr=self.lr)
        return optimizer


class DataModule(LightningDataModule):
    def __init__(self, dataset_name, data_cpu=False, fan_out=[10, 25],
                 device=th.device('cpu'), batch_size=1000, num_workers=4):
        super().__init__()
        if dataset_name == 'reddit':
            g, n_classes = load_reddit()
        elif dataset_name == 'ogbn-products':
            g, n_classes = load_ogb('ogbn-products')
        else:
            raise ValueError('unknown dataset')

        train_nid = th.nonzero(g.ndata['train_mask'], as_tuple=True)[0]
        val_nid = th.nonzero(g.ndata['val_mask'], as_tuple=True)[0]
        test_nid = th.nonzero(~(g.ndata['train_mask'] | g.ndata['val_mask']), as_tuple=True)[0]

        sampler = dgl.dataloading.MultiLayerNeighborSampler([int(_) for _ in fan_out])

        dataloader_device = th.device('cpu')
        if not data_cpu:
            train_nid = train_nid.to(device)
            val_nid = val_nid.to(device)
            test_nid = test_nid.to(device)
            g = g.formats(['csc'])
            g = g.to(device)
            dataloader_device = device

        self.g = g
        self.train_nid, self.val_nid, self.test_nid = train_nid, val_nid, test_nid
        self.sampler = sampler
        self.device = dataloader_device
        self.batch_size = batch_size
        self.num_workers = num_workers
        self.in_feats = g.ndata['features'].shape[1]
        self.n_classes = n_classes

    def train_dataloader(self):
        return dgl.dataloading.NodeDataLoader(
            self.g,
            self.train_nid,
            self.sampler,
            device=self.device,
            batch_size=self.batch_size,
            shuffle=True,
            drop_last=False,
            num_workers=self.num_workers)

    def val_dataloader(self):
        return dgl.dataloading.NodeDataLoader(
            self.g,
            self.val_nid,
            self.sampler,
            device=self.device,
            batch_size=self.batch_size,
            shuffle=True,
            drop_last=False,
            num_workers=self.num_workers)


def evaluate(model, g, val_nid, device):
    """
    Evaluate the model on the validation set specified by ``val_nid``.
    g : The entire graph.
    val_nid : the node Ids for validation.
    device : The GPU device to evaluate on.
    """
    model.eval()
    nfeat = g.ndata['features']
    labels = g.ndata['labels']
    with th.no_grad():
        pred = model.module.inference(g, nfeat, device, args.batch_size, args.num_workers)
    model.train()
    test_acc = Accuracy()
    return test_acc(th.softmax(pred[val_nid], -1), labels[val_nid].to(pred.device))


if __name__ == '__main__':
    argparser = argparse.ArgumentParser()
    argparser.add_argument('--gpu', type=int, default=0,
                           help="GPU device ID. Use -1 for CPU training")
    argparser.add_argument('--dataset', type=str, default='reddit')
    argparser.add_argument('--num-epochs', type=int, default=20)
    argparser.add_argument('--num-hidden', type=int, default=16)
    argparser.add_argument('--num-layers', type=int, default=2)
    argparser.add_argument('--fan-out', type=str, default='10,25')
    argparser.add_argument('--batch-size', type=int, default=1000)
    argparser.add_argument('--log-every', type=int, default=20)
    argparser.add_argument('--eval-every', type=int, default=5)
    argparser.add_argument('--lr', type=float, default=0.003)
    argparser.add_argument('--dropout', type=float, default=0.5)
    argparser.add_argument('--num-workers', type=int, default=0,
                           help="Number of sampling processes. Use 0 for no extra process.")
    argparser.add_argument('--inductive', action='store_true',
                           help="Inductive learning setting")
    argparser.add_argument('--data-cpu', action='store_true',
                           help="By default the script puts the graph, node features and labels "
                                "on GPU when using it to save time for data copy. This may "
                                "be undesired if they cannot fit in GPU memory at once. "
                                "This flag disables that.")
    args = argparser.parse_args()

    if args.gpu >= 0:
        device = th.device('cuda:%d' % args.gpu)
    else:
        device = th.device('cpu')

    datamodule = DataModule(
        args.dataset, args.data_cpu, [int(_) for _ in args.fan_out.split(',')],
        device, args.batch_size, args.num_workers)
    model = SAGELightning(
        datamodule.in_feats, args.num_hidden, datamodule.n_classes, args.num_layers,
        F.relu, args.dropout, args.lr)

    # Train
    checkpoint_callback = ModelCheckpoint(monitor='val_acc', save_top_k=1)
    trainer = Trainer(gpus=[args.gpu] if args.gpu != -1 else None,
                      max_epochs=args.num_epochs,
                      callbacks=[checkpoint_callback])
    trainer.fit(model, datamodule=datamodule)

    # Test
    dirs = glob.glob('./lightning_logs/*')
    version = max([int(os.path.split(x)[-1].split('_')[-1]) for x in dirs])
    logdir = './lightning_logs/version_%d' % version
    print('Evaluating model in', logdir)
    ckpt = glob.glob(os.path.join(logdir, 'checkpoints', '*'))[0]

    model = SAGELightning.load_from_checkpoint(
        checkpoint_path=ckpt, hparams_file=os.path.join(logdir, 'hparams.yaml')).to(device)
    test_acc = evaluate(model, datamodule.g, datamodule.test_nid, device)
    print('Test accuracy:', test_acc)