node_classification.py 13.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import argparse
import socket
import time

import dgl
import dgl.nn.pytorch as dglnn
import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import tqdm


def load_subtensor(g, seeds, input_nodes, device, load_feat=True):
    """
    Copys features and labels of a set of nodes onto GPU.
    """
    batch_inputs = (
        g.ndata["features"][input_nodes].to(device) if load_feat else None
    )
    batch_labels = g.ndata["labels"][seeds].to(device)
    return batch_inputs, batch_labels


class DistSAGE(nn.Module):
    def __init__(
        self, in_feats, n_hidden, n_classes, n_layers, activation, dropout
    ):
        super().__init__()
        self.n_layers = n_layers
        self.n_hidden = n_hidden
        self.n_classes = n_classes
        self.layers = nn.ModuleList()
        self.layers.append(dglnn.SAGEConv(in_feats, n_hidden, "mean"))
        for _ in range(1, n_layers - 1):
            self.layers.append(dglnn.SAGEConv(n_hidden, n_hidden, "mean"))
        self.layers.append(dglnn.SAGEConv(n_hidden, n_classes, "mean"))
        self.dropout = nn.Dropout(dropout)
        self.activation = activation

    def forward(self, blocks, x):
        h = x
        for i, (layer, block) in enumerate(zip(self.layers, blocks)):
            h = layer(block, h)
            if i != len(self.layers) - 1:
                h = self.activation(h)
                h = self.dropout(h)
        return h

    def inference(self, g, x, batch_size, device):
        """
        Inference with the GraphSAGE model on full neighbors (i.e. without
        neighbor sampling).

        g : the entire graph.
        x : the input of entire node set.

        Distributed layer-wise inference.
        """
        # During inference with sampling, multi-layer blocks are very
        # inefficient because lots of computations in the first few layers
        # are repeated. Therefore, we compute the representation of all nodes
        # layer by layer.  The nodes on each layer are of course splitted in
        # batches.
        # TODO: can we standardize this?
        nodes = dgl.distributed.node_split(
            np.arange(g.num_nodes()),
            g.get_partition_book(),
            force_even=True,
        )
        y = dgl.distributed.DistTensor(
            (g.num_nodes(), self.n_hidden),
            th.float32,
            "h",
            persistent=True,
        )
        for i, layer in enumerate(self.layers):
            if i == len(self.layers) - 1:
                y = dgl.distributed.DistTensor(
                    (g.num_nodes(), self.n_classes),
                    th.float32,
                    "h_last",
                    persistent=True,
                )
            print(f"|V|={g.num_nodes()}, eval batch size: {batch_size}")

            sampler = dgl.dataloading.NeighborSampler([-1])
            dataloader = dgl.dataloading.DistNodeDataLoader(
                g,
                nodes,
                sampler,
                batch_size=batch_size,
                shuffle=False,
                drop_last=False,
            )

            for input_nodes, output_nodes, blocks in tqdm.tqdm(dataloader):
                block = blocks[0].to(device)
                h = x[input_nodes].to(device)
                h_dst = h[: block.number_of_dst_nodes()]
                h = layer(block, (h, h_dst))
                if i != len(self.layers) - 1:
                    h = self.activation(h)
                    h = self.dropout(h)

                y[output_nodes] = h.cpu()

            x = y
            g.barrier()
        return y


def compute_acc(pred, labels):
    """
    Compute the accuracy of prediction given the labels.
    """
    labels = labels.long()
    return (th.argmax(pred, dim=1) == labels).float().sum() / len(pred)


def evaluate(model, g, inputs, labels, val_nid, test_nid, batch_size, device):
    """
    Evaluate the model on the validation set specified by ``val_nid``.
    g : The entire graph.
    inputs : The features of all the nodes.
    labels : The labels of all the nodes.
    val_nid : the node Ids for validation.
    batch_size : Number of nodes to compute at the same time.
    device : The GPU device to evaluate on.
    """
    model.eval()
    with th.no_grad():
        pred = model.inference(g, inputs, batch_size, device)
    model.train()
    return compute_acc(pred[val_nid], labels[val_nid]), compute_acc(
        pred[test_nid], labels[test_nid]
    )


def run(args, device, data):
    train_nid, val_nid, test_nid, in_feats, n_classes, g = data
    sampler = dgl.dataloading.NeighborSampler(
        [int(fanout) for fanout in args.fan_out.split(",")]
    )
    dataloader = dgl.dataloading.DistNodeDataLoader(
        g,
        train_nid,
        sampler,
        batch_size=args.batch_size,
        shuffle=True,
        drop_last=False,
    )
    model = DistSAGE(
        in_feats,
        args.num_hidden,
        n_classes,
        args.num_layers,
        F.relu,
        args.dropout,
    )
    model = model.to(device)
    if args.num_gpus == 0:
        model = th.nn.parallel.DistributedDataParallel(model)
    else:
        model = th.nn.parallel.DistributedDataParallel(
            model, device_ids=[device], output_device=device
        )
    loss_fcn = nn.CrossEntropyLoss()
    loss_fcn = loss_fcn.to(device)
    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    # Training loop.
    iter_tput = []
    epoch = 0
    epoch_time = []
    test_acc = 0.0
    for _ in range(args.num_epochs):
        epoch += 1
        tic = time.time()
        sample_time = 0
        forward_time = 0
        backward_time = 0
        update_time = 0
        num_seeds = 0
        num_inputs = 0
        start = time.time()
        # Loop over the dataloader to sample the computation dependency graph
        # as a list of blocks.
        step_time = []

        with model.join():
            for step, (input_nodes, seeds, blocks) in enumerate(dataloader):
                tic_step = time.time()
                sample_time += tic_step - start
                batch_inputs, batch_labels = load_subtensor(
                    g, seeds, input_nodes, "cpu"
                )
                batch_labels = batch_labels.long()
                num_seeds += len(blocks[-1].dstdata[dgl.NID])
                num_inputs += len(blocks[0].srcdata[dgl.NID])
                # Move to target device.
                blocks = [block.to(device) for block in blocks]
                batch_inputs = batch_inputs.to(device)
                batch_labels = batch_labels.to(device)
                # Compute loss and prediction.
                start = time.time()
                batch_pred = model(blocks, batch_inputs)
                loss = loss_fcn(batch_pred, batch_labels)
                forward_end = time.time()
                optimizer.zero_grad()
                loss.backward()
                compute_end = time.time()
                forward_time += forward_end - start
                backward_time += compute_end - forward_end

                optimizer.step()
                update_time += time.time() - compute_end

                step_t = time.time() - tic_step
                step_time.append(step_t)
                iter_tput.append(len(blocks[-1].dstdata[dgl.NID]) / step_t)
                if (step + 1) % args.log_every == 0:
                    acc = compute_acc(batch_pred, batch_labels)
                    gpu_mem_alloc = (
                        th.cuda.max_memory_allocated() / 1000000
                        if th.cuda.is_available()
                        else 0
                    )
                    print(
                        "Part {} | Epoch {:05d} | Step {:05d} | Loss {:.4f} | "
                        "Train Acc {:.4f} | Speed (samples/sec) {:.4f} | GPU "
                        "{:.1f} MB | time {:.3f} s".format(
                            g.rank(),
                            epoch,
                            step,
                            loss.item(),
                            acc.item(),
                            np.mean(iter_tput[3:]),
                            gpu_mem_alloc,
                            np.mean(step_time[-args.log_every :]),
                        )
                    )
                start = time.time()

        toc = time.time()
        print(
            "Part {}, Epoch Time(s): {:.4f}, sample+data_copy: {:.4f}, "
            "forward: {:.4f}, backward: {:.4f}, update: {:.4f}, #seeds: {}, "
            "#inputs: {}".format(
                g.rank(),
                toc - tic,
                sample_time,
                forward_time,
                backward_time,
                update_time,
                num_seeds,
                num_inputs,
            )
        )
        epoch_time.append(toc - tic)

        if epoch % args.eval_every == 0 or epoch == args.num_epochs:
            start = time.time()
            val_acc, test_acc = evaluate(
                model.module,
                g,
                g.ndata["features"],
                g.ndata["labels"],
                val_nid,
                test_nid,
                args.batch_size_eval,
                device,
            )
            print(
                "Part {}, Val Acc {:.4f}, Test Acc {:.4f}, time: {:.4f}".format(
                    g.rank(), val_acc, test_acc, time.time() - start
                )
            )

    return np.mean(epoch_time[-int(args.num_epochs * 0.8) :]), test_acc


def main(args):
    print(socket.gethostname(), "Initializing DistDGL.")
    dgl.distributed.initialize(args.ip_config, net_type=args.net_type)
    print(socket.gethostname(), "Initializing PyTorch process group.")
    th.distributed.init_process_group(backend=args.backend)
    print(socket.gethostname(), "Initializing DistGraph.")
    g = dgl.distributed.DistGraph(args.graph_name, part_config=args.part_config)
    print(socket.gethostname(), "rank:", g.rank())

    pb = g.get_partition_book()
    if "trainer_id" in g.ndata:
        train_nid = dgl.distributed.node_split(
            g.ndata["train_mask"],
            pb,
            force_even=True,
            node_trainer_ids=g.ndata["trainer_id"],
        )
        val_nid = dgl.distributed.node_split(
            g.ndata["val_mask"],
            pb,
            force_even=True,
            node_trainer_ids=g.ndata["trainer_id"],
        )
        test_nid = dgl.distributed.node_split(
            g.ndata["test_mask"],
            pb,
            force_even=True,
            node_trainer_ids=g.ndata["trainer_id"],
        )
    else:
        train_nid = dgl.distributed.node_split(
            g.ndata["train_mask"], pb, force_even=True
        )
        val_nid = dgl.distributed.node_split(
            g.ndata["val_mask"], pb, force_even=True
        )
        test_nid = dgl.distributed.node_split(
            g.ndata["test_mask"], pb, force_even=True
        )
    local_nid = pb.partid2nids(pb.partid).detach().numpy()
    print(
        "part {}, train: {} (local: {}), val: {} (local: {}), test: {} "
        "(local: {})".format(
            g.rank(),
            len(train_nid),
            len(np.intersect1d(train_nid.numpy(), local_nid)),
            len(val_nid),
            len(np.intersect1d(val_nid.numpy(), local_nid)),
            len(test_nid),
            len(np.intersect1d(test_nid.numpy(), local_nid)),
        )
    )
    del local_nid
    if args.num_gpus == 0:
        device = th.device("cpu")
    else:
        dev_id = g.rank() % args.num_gpus
        device = th.device("cuda:" + str(dev_id))
    n_classes = args.n_classes
    if n_classes == 0:
        labels = g.ndata["labels"][np.arange(g.num_nodes())]
        n_classes = len(th.unique(labels[th.logical_not(th.isnan(labels))]))
        del labels
    print(f"Number of classes: {n_classes}")

    # Pack data.
    in_feats = g.ndata["features"].shape[1]
    data = train_nid, val_nid, test_nid, in_feats, n_classes, g

    # Train and evaluate.
    epoch_time, test_acc = run(args, device, data)
    print(
        f"Summary of node classification(GraphSAGE): GraphName "
        f"{args.graph_name} | TrainEpochTime(mean) {epoch_time:.4f} "
        f"| TestAccuracy {test_acc:.4f}"
    )


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Distributed GraphSAGE.")
    parser.add_argument("--graph_name", type=str, help="graph name")
    parser.add_argument(
        "--ip_config", type=str, help="The file for IP configuration"
    )
    parser.add_argument(
        "--part_config", type=str, help="The path to the partition config file"
    )
    parser.add_argument(
        "--n_classes", type=int, default=0, help="the number of classes"
    )
    parser.add_argument(
        "--backend",
        type=str,
        default="gloo",
        help="pytorch distributed backend",
    )
    parser.add_argument(
        "--num_gpus",
        type=int,
        default=0,
        help="the number of GPU device. Use 0 for CPU training",
    )
    parser.add_argument("--num_epochs", type=int, default=20)
    parser.add_argument("--num_hidden", type=int, default=16)
    parser.add_argument("--num_layers", type=int, default=2)
    parser.add_argument("--fan_out", type=str, default="10,25")
    parser.add_argument("--batch_size", type=int, default=1000)
    parser.add_argument("--batch_size_eval", type=int, default=100000)
    parser.add_argument("--log_every", type=int, default=20)
    parser.add_argument("--eval_every", type=int, default=5)
    parser.add_argument("--lr", type=float, default=0.003)
    parser.add_argument("--dropout", type=float, default=0.5)
    parser.add_argument(
        "--local_rank", type=int, help="get rank of the process"
    )
    parser.add_argument(
        "--pad-data",
        default=False,
        action="store_true",
        help="Pad train nid to the same length across machine, to ensure num "
        "of batches to be the same.",
    )
    parser.add_argument(
        "--net_type",
        type=str,
        default="socket",
        help="backend net type, 'socket' or 'tensorpipe'",
    )
    args = parser.parse_args()
    print(f"Arguments: {args}")
    main(args)