sddmm.cuh 15 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#include "hip/hip_runtime.h"
/*!
 *  Copyright (c) 2020 by Contributors
 * \file array/cuda/sddmm.cuh
 * \brief SDDMM CUDA kernel function header.
 */
#ifndef DGL_ARRAY_CUDA_SDDMM_CUH_
#define DGL_ARRAY_CUDA_SDDMM_CUH_

#include <dgl/bcast.h>
#include "macro.cuh"
#include "atomic.cuh"
#include "functor.cuh"
#include "fp16.cuh"
#include "./utils.h"
#include "./functor.cuh"
#include "../selector.h"
#include "../../runtime/cuda/cuda_common.h"

namespace dgl {

using namespace cuda;

namespace aten {
namespace cuda {

#define SWITCH_OP(op, Op, ...)                                      \
  do {                                                              \
    if ((op) == "add") {                                            \
      typedef cuda::binary::Add<DType> Op;                          \
      { __VA_ARGS__ }                                               \
    } else if ((op) == "sub") {                                     \
      typedef cuda::binary::Sub<DType> Op;                          \
      { __VA_ARGS__ }                                               \
    } else if ((op) == "mul") {                                     \
      typedef cuda::binary::Mul<DType> Op;                          \
      { __VA_ARGS__ }                                               \
    } else if ((op) == "div") {                                     \
      typedef cuda::binary::Div<DType> Op;                          \
      { __VA_ARGS__ }                                               \
    } else if ((op) == "copy_lhs") {                                \
      typedef cuda::binary::CopyLhs<DType> Op;                      \
      { __VA_ARGS__ }                                               \
    } else if ((op) == "copy_rhs") {                                \
      typedef cuda::binary::CopyRhs<DType> Op;                      \
      { __VA_ARGS__ }                                               \
    } else if ((op) == "dot") {                                     \
      typedef cuda::binary::Dot<DType> Op;                          \
      { __VA_ARGS__ }                                               \
    } else {                                                        \
      LOG(FATAL) << "Unsupported SpMM/SDDMM binary operator: " << op;     \
    }                                                               \
  } while (0)

#define SWITCH_RHS(rhs_target, RhsTarget, ...)                        \
  do {                                                                \
    if ((rhs_target) == 0) {                                          \
      constexpr int RhsTarget = 0;                                    \
      { __VA_ARGS__ }                                                 \
    } else if ((rhs_target) == 1) {                                   \
      constexpr int RhsTarget = 1;                                    \
      { __VA_ARGS__ }                                                 \
    } else if ((rhs_target) == 2) {                                   \
      constexpr int RhsTarget = 2;                                    \
      { __VA_ARGS__ }                                                 \
    } else {                                                          \
      LOG(INFO) << "Invalid rhs target: " << (rhs_target);            \
    }                                                                 \
  } while (0)

#define SWITCH_TARGET(lhs_target, rhs_target, LhsTarget, RhsTarget, ...)\
  do {                                                                  \
    if ((lhs_target) == 0) {                                            \
      constexpr int LhsTarget = 0;                                      \
      SWITCH_RHS(rhs_target, RhsTarget, __VA_ARGS__);                   \
    } else if ((lhs_target) == 1) {                                     \
      constexpr int LhsTarget = 1;                                      \
      SWITCH_RHS(rhs_target, RhsTarget, __VA_ARGS__);                   \
    } else if ((lhs_target) == 2) {                                     \
      constexpr int LhsTarget = 2;                                      \
      SWITCH_RHS(rhs_target, RhsTarget, __VA_ARGS__);                   \
    } else {                                                            \
      LOG(INFO) << "Invalid lhs target: " << (lhs_target);              \
    }                                                                   \
  } while (0)

constexpr unsigned int full_mask = 0xffffffff;

/*!
 * \brief CUDA kernel of g-SDDMM on Coo format.
 * \note it uses edge parallel strategy, different threadblocks (on y-axis)
 *       is responsible for the computation on different edges. Threadblocks
 *       on the x-axis are responsible for the computation on different positions
 *       in feature dimension.
 */
template <typename Idx, typename DType, typename BinaryOp,
          bool UseBcast = false, bool UseIdx = false,
          int LhsTarget = 0, int RhsTarget = 2>
__global__ void SDDMMCooKernel(
  const DType* __restrict__ lhs,
  const DType* __restrict__ rhs,
  DType* __restrict__ out,
  const Idx* __restrict__ row,
  const Idx* __restrict__ col,
  const Idx* __restrict__ edge_map,
  int64_t N, int64_t M, int64_t E, int64_t reduce_size,
  const int64_t* __restrict__ lhs_off,
  const int64_t* __restrict__ rhs_off,
  int64_t lhs_len, int64_t rhs_len, int64_t out_len) {
  // SDDMM with COO.
  Idx ty = blockIdx.y * blockDim.y + threadIdx.y;
  const Idx stride_y = blockDim.y * gridDim.y;
  while (ty < E) {
    const Idx src = _ldg(row + ty);
    const Idx dst = _ldg(col + ty);
    const Idx eid = UseIdx ? _ldg(edge_map + ty) : ty;
    const DType* lhsoff = BinaryOp::use_lhs ?
      (lhs + Selector<LhsTarget>::Call(src, eid, dst) * lhs_len): nullptr;
    const DType* rhsoff = BinaryOp::use_rhs ?
      (rhs + Selector<RhsTarget>::Call(src, eid, dst) * rhs_len): nullptr;
    DType* outoff = out + eid * out_len;
    int tx = blockIdx.x * blockDim.x + threadIdx.x;
    const int stride_x = blockDim.x * gridDim.x;
    while (tx < out_len) {
      const Idx lhs_add = UseBcast ? lhs_off[tx] : tx;
      const Idx rhs_add = UseBcast ? rhs_off[tx] : tx;
      DType val = BinaryOp::Call(
          lhsoff + lhs_add * reduce_size,
          rhsoff + rhs_add * reduce_size,
          reduce_size);
      outoff[tx] = val;
      tx += stride_x;
    }
    ty += stride_y;
  }
}

/*!
 * \brief CUDA kernel of SDDMM-dot on Coo format, accelerated with tree reduction.
 * \note it uses edge parallel strategy, different threadblocks (on y-axis)
 *       is responsible for the computation on different edges. Threadblocks
 *       on the x-axis are responsible for the computation on different positions
 *       in feature dimension.
 */
template <typename Idx, typename DType,
          bool UseBcast = false, bool UseIdx = false,
          int LhsTarget = 0, int RhsTarget = 2>
__global__ void SDDMMCooTreeReduceKernel(
  const DType* __restrict__ lhs,
  const DType* __restrict__ rhs,
  DType* __restrict__ out,
  const Idx* __restrict__ row,
  const Idx* __restrict__ col,
  const Idx* __restrict__ edge_map,
  int64_t N, int64_t M, int64_t E, int64_t reduce_size,
  const int64_t* __restrict__ lhs_off,
  const int64_t* __restrict__ rhs_off,
  int64_t lhs_len, int64_t rhs_len, int64_t out_len) {
  Idx ty = blockIdx.x * blockDim.y + threadIdx.y;
  if (ty < E) {
    const Idx src = _ldg(row + ty);
    const Idx dst = _ldg(col + ty);
    const Idx eid = UseIdx ? _ldg(edge_map + ty) : ty;
    const DType* lhsoff = lhs + Selector<LhsTarget>::Call(src, eid, dst) * lhs_len;
    const DType* rhsoff = rhs + Selector<RhsTarget>::Call(src, eid, dst) * rhs_len;
    DType* outoff = out + eid * out_len;
    int tx = threadIdx.x;  // tx < 32
    for (int i = blockIdx.y; i < out_len; i += gridDim.y) {  // over output feature dimension
      const Idx lhs_add = UseBcast ? __ldg(lhs_off + i) : i;
      const Idx rhs_add = UseBcast ? __ldg(rhs_off + i) : i;
      DType val = reduce::Sum<Idx, DType>::zero();;
      for (int j = tx; j < reduce_size; j += 64) {
        val += lhsoff[lhs_add * reduce_size + j] * rhsoff[rhs_add * reduce_size + j];
        if (j + 32 < reduce_size)
          val += lhsoff[lhs_add * reduce_size + j + 32] * rhsoff[rhs_add * reduce_size + j + 32];
      }
#pragma unroll
      for (int offset = 16; offset > 0; offset /= 2)
lisj's avatar
lisj committed
179
        val += __shfl_down(val, offset);
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
      if (tx == 0)
        outoff[i] = val;
    }
  }
}

// Binary search the row_offsets to find the source node of the edge id.
template <typename Idx>
__device__ __forceinline__ Idx BinarySearchSrc(const Idx *array, Idx length, Idx eid) {
  Idx lo = 0, hi = length - 1;
  while (lo < hi) {
    Idx mid = (lo + hi) >> 1;
    if (_ldg(array + mid) <= eid) {
      lo = mid + 1;
    } else {
      hi = mid;
    }
  }
  // INVARIANT: lo == hi
  if (_ldg(array + hi) == eid) {
    return hi;
  } else {
    return hi - 1;
  }
}

/*!
 * \brief CUDA kernel of g-SDDMM on Csr format.
 * \note it uses edge parallel strategy, different threadblocks (on y-axis)
 *       is responsible for the computation on different edges. Threadblocks
 *       on the x-axis are responsible for the computation on different positions
 *       in feature dimension.
 *       To efficiently find the source node idx and destination node index of an
 *       given edge on Csr format, it uses binary search (time complexity O(log N)).
 */
template <typename Idx, typename DType, typename BinaryOp,
          bool UseBcast = false, bool UseIdx = false,
          int LhsTarget = 0, int RhsTarget = 2>
__global__ void SDDMMCsrKernel(
  const DType* __restrict__ lhs,
  const DType* __restrict__ rhs,
  DType* __restrict__ out,
  const Idx* __restrict__ indptr,
  const Idx* __restrict__ indices,
  const Idx* __restrict__ edge_map,
  int64_t N, int64_t M, int64_t E, int64_t reduce_size,
  const int64_t* __restrict__ lhs_off,
  const int64_t* __restrict__ rhs_off,
  int64_t lhs_len, int64_t rhs_len, int64_t out_len) {
  // SDDMM with Csr.
  Idx ty = blockIdx.y * blockDim.y + threadIdx.y;
  const Idx stride_y = blockDim.y * gridDim.y;
  while (ty < E) {
    const Idx src = BinarySearchSrc<Idx>(indptr, N + 1, ty);
    const Idx dst = _ldg(indices + ty);
    const Idx eid = UseIdx ? _ldg(edge_map + ty) : ty;
    int64_t tx = blockIdx.x * blockDim.x + threadIdx.x;
    const int64_t stride_x = blockDim.x * gridDim.x;
    const DType* lhsoff = BinaryOp::use_lhs ?
      (lhs + Selector<LhsTarget>::Call(src, eid, dst) * lhs_len): nullptr;
    const DType* rhsoff = BinaryOp::use_rhs ?
      (rhs + Selector<RhsTarget>::Call(src, eid, dst) * rhs_len): nullptr;
    DType* outoff = out + eid * out_len;
    while (tx < out_len) {
      const Idx lhs_add = UseBcast ? lhs_off[tx] : tx;
      const Idx rhs_add = UseBcast ? rhs_off[tx] : tx;
      DType val = BinaryOp::Call(
          lhsoff + lhs_add * reduce_size,
          rhsoff + rhs_add * reduce_size,
          reduce_size);
      outoff[tx] = val;
      tx += stride_x;
    }
    ty += stride_y;
  }
}

/*!
 * \brief CUDA implementation of g-SDDMM on Coo format.
 * \param bcast Broadcast information.
 * \param coo The Coo matrix.
 * \param lhs The left hand side operand feature.
 * \param rhs The right hand size operand feature.
 * \param out The result feature on edges.
 */
template <typename Idx, typename DType, typename Op,
          int LhsTarget = 0, int RhsTarget = 2>
void SDDMMCoo(
    const BcastOff& bcast,
    const COOMatrix& coo,
    NDArray lhs,
    NDArray rhs,
    NDArray out) {
  const Idx *row = coo.row.Ptr<Idx>();
  const Idx *col = coo.col.Ptr<Idx>();
  const Idx *edge_map = coo.data.Ptr<Idx>();
  const DType *lhs_data = lhs.Ptr<DType>();
  const DType *rhs_data = rhs.Ptr<DType>();
  DType *out_data = out.Ptr<DType>();
  hipStream_t stream = runtime::getCurrentCUDAStream();

  int64_t *lhs_off = nullptr, *rhs_off = nullptr;
  int64_t len = bcast.out_len,
          lhs_len = bcast.lhs_len,
          rhs_len = bcast.rhs_len;
  int64_t reduce_dim = bcast.reduce_size;

  const int64_t nnz = coo.row->shape[0];
  const bool use_idx = !IsNullArray(coo.data);

  if (std::is_same<Op, binary::Dot<DType> >::value && reduce_dim >= 32) {
    const int ntx = 32;  // on feature dimension
    const int nty = 8;   // on out dimension
    const int nbx = (nnz + nty - 1) / nty;
    const int nby = FindNumBlocks<'y'>(len);
    const dim3 nblks(nbx, nby);
    const dim3 nthrs(ntx, nty);
    BCAST_IDX_CTX_SWITCH(bcast, use_idx, out->ctx, lhs_off, rhs_off, {
      CUDA_KERNEL_CALL((SDDMMCooTreeReduceKernel<Idx, DType, UseBcast, UseIdx, LhsTarget, RhsTarget>),
          nblks, nthrs, 0, stream,
          lhs_data, rhs_data, out_data,
          row, col, edge_map,
          coo.num_rows, coo.num_cols, nnz, reduce_dim,
          lhs_off, rhs_off,
          lhs_len, rhs_len, len);
    });
  } else {
    const int ntx = FindNumThreads(len);
    const int nty = CUDA_MAX_NUM_THREADS / ntx;
    const int nbx = (len + ntx - 1) / ntx;
    const int nby = FindNumBlocks<'y'>((nnz + nty - 1) / nty);
    const dim3 nblks(nbx, nby);
    const dim3 nthrs(ntx, nty);
    BCAST_IDX_CTX_SWITCH(bcast, use_idx, out->ctx, lhs_off, rhs_off, {
      CUDA_KERNEL_CALL((SDDMMCooKernel<Idx, DType, Op, UseBcast, UseIdx, LhsTarget, RhsTarget>),
          nblks, nthrs, 0, stream,
          lhs_data, rhs_data, out_data,
          row, col, edge_map,
          coo.num_rows, coo.num_cols, nnz, reduce_dim,
          lhs_off, rhs_off,
          lhs_len, rhs_len, len);
    });
  }
}

/*!
 * \brief CUDA implementation of g-SDDMM on Csr format.
 * \param bcast Broadcast information.
 * \param csr The Csr matrix.
 * \param lhs The left hand side operand feature.
 * \param rhs The right hand size operand feature.
 * \param out The result feature on edges.
 */
template <typename Idx, typename DType, typename Op,
          int LhsTarget = 0, int RhsTarget = 2>
void SDDMMCsr(
    const BcastOff& bcast,
    const CSRMatrix& csr,
    NDArray lhs,
    NDArray rhs,
    NDArray out) {
  const Idx *indptr = csr.indptr.Ptr<Idx>();
  const Idx *indices = csr.indices.Ptr<Idx>();
  const Idx *edge_map = csr.data.Ptr<Idx>();
  const DType *lhs_data = lhs.Ptr<DType>();
  const DType *rhs_data = rhs.Ptr<DType>();
  DType *out_data = out.Ptr<DType>();
  hipStream_t stream = runtime::getCurrentCUDAStream();
  int64_t N = csr.num_rows, M = csr.num_cols, E = csr.indices->shape[0];

  int64_t *lhs_off = nullptr, *rhs_off = nullptr;
  int64_t len = bcast.out_len,
          lhs_len = bcast.lhs_len,
          rhs_len = bcast.rhs_len;
  int64_t reduce_dim = bcast.reduce_size;

  const int ntx = FindNumThreads(len);
  const int nty = CUDA_MAX_NUM_THREADS / ntx;
  const int nbx = (len + ntx - 1) / ntx;
  const int nby = FindNumBlocks<'y'>((E + nty - 1) / nty);
  const dim3 nblks(nbx, nby);
  const dim3 nthrs(ntx, nty);
  const bool use_idx = !IsNullArray(csr.data);

  BCAST_IDX_CTX_SWITCH(bcast, use_idx, out->ctx, lhs_off, rhs_off, {
    CUDA_KERNEL_CALL((SDDMMCsrKernel<Idx, DType, Op, UseBcast, UseIdx, LhsTarget, RhsTarget>),
        nblks, nthrs, 0, stream,
        lhs_data, rhs_data, out_data,
        indptr, indices, edge_map,
        N, M, E, reduce_dim,
        lhs_off, rhs_off,
        lhs_len, rhs_len, len);
  });
}


}  // namespace cuda
}  // namespace aten
}  // namespace dgl

#endif