"src/vscode:/vscode.git/clone" did not exist on "debc74f442dc74210528eb6d8a4d1f7f27fa18c3"
test_optim.py 17.4 KB
Newer Older
1
import time
2
import torch.multiprocessing as mp
3
4
5
import unittest, os
import pytest

6
7
8
9
10
11
12
import torch as th
import backend as F

from dgl.nn import NodeEmbedding
from dgl.optim import SparseAdam, SparseAdagrad

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
13
14
@pytest.mark.parametrize('emb_dim', [1, 4, 101, 1024])
def test_sparse_adam(emb_dim):
15
16
17
18
19
20
21
    num_embs = 10
    device=F.ctx()
    dgl_emb = NodeEmbedding(num_embs, emb_dim, 'test')
    torch_emb = th.nn.Embedding(num_embs, emb_dim, sparse=True)
    th.manual_seed(0)
    th.nn.init.uniform_(torch_emb.weight, 0, 1.0)
    th.manual_seed(0)
22
    th.nn.init.uniform_(dgl_emb.weight, 0, 1.0)
23
24
25
26
27
28
29
30

    dgl_adam = SparseAdam(params=[dgl_emb], lr=0.01)
    torch_adam = th.optim.SparseAdam(list(torch_emb.parameters()), lr=0.01)

    # first step
    idx = th.randint(0, num_embs, size=(4,))
    dgl_value = dgl_emb(idx, device).to(th.device('cpu'))
    torch_value = torch_emb(idx)
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
    labels = th.zeros((4,)).long()
    print("dgl_value = {}".format(dgl_value))
    print("labels = {}".format(labels))

    dgl_adam.zero_grad()
    torch_adam.zero_grad()
    dgl_loss = th.nn.functional.cross_entropy(dgl_value, labels)
    torch_loss = th.nn.functional.cross_entropy(torch_value, labels)
    dgl_loss.backward()
    torch_loss.backward()

    dgl_adam.step()
    torch_adam.step()
    assert F.allclose(dgl_emb.weight, torch_emb.weight)

    # Can not test second step
    # Pytorch sparseAdam maintains a global step
    # DGL sparseAdam use a per embedding step

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@pytest.mark.parametrize('use_uva', [False, True, None])
@pytest.mark.parametrize('emb_dim', [1, 4, 101, 1024])
def test_sparse_adam_uva(use_uva, emb_dim):
    if F.ctx().type == 'cpu' and use_uva == True:
        # we want to only test values of False and None when not using GPU
        pytest.skip("UVA cannot be used without GPUs.")

    num_embs = 10
    device=F.ctx()
    dgl_emb = NodeEmbedding(num_embs, emb_dim, 'test_uva{}'.format(use_uva))
    torch_emb = th.nn.Embedding(num_embs, emb_dim, sparse=True)
    th.manual_seed(0)
    th.nn.init.uniform_(torch_emb.weight, 0, 1.0)
    th.manual_seed(0)
    th.nn.init.uniform_(dgl_emb.weight, 0, 1.0)

    dgl_adam = SparseAdam(params=[dgl_emb], lr=0.01, use_uva=use_uva)
    torch_adam = th.optim.SparseAdam(list(torch_emb.parameters()), lr=0.01)

    # first step
    idx = th.randint(0, num_embs, size=(4,))
    dgl_value = dgl_emb(idx, device).to(th.device('cpu'))
    torch_value = torch_emb(idx)
    labels = th.zeros((4,)).long()
75
76
77
78
79
80
81
82
83
84

    dgl_adam.zero_grad()
    torch_adam.zero_grad()
    dgl_loss = th.nn.functional.cross_entropy(dgl_value, labels)
    torch_loss = th.nn.functional.cross_entropy(torch_value, labels)
    dgl_loss.backward()
    torch_loss.backward()

    dgl_adam.step()
    torch_adam.step()
85
    assert F.allclose(dgl_emb.weight, torch_emb.weight)
86
87
88
89
90

    # Can not test second step
    # Pytorch sparseAdam maintains a global step
    # DGL sparseAdam use a per embedding step

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@pytest.mark.parametrize('dtype', [th.float32, th.float16])
@pytest.mark.parametrize('emb_dim', [1, 4, 101, 1024])
def test_sparse_adam_dtype(dtype, emb_dim):
    num_embs = 10
    device=F.ctx()
    dgl_emb = NodeEmbedding(num_embs, emb_dim, 'test_dtype{}'.format(dtype))
    torch_emb = th.nn.Embedding(num_embs, emb_dim, sparse=True)
    th.manual_seed(0)
    th.nn.init.uniform_(torch_emb.weight, 0, 1.0)
    th.manual_seed(0)
    th.nn.init.uniform_(dgl_emb.weight, 0, 1.0)

    dgl_adam = SparseAdam(params=[dgl_emb], lr=0.01, dtype=dtype)
    torch_adam = th.optim.SparseAdam(list(torch_emb.parameters()), lr=0.01)

    # first step
    idx = th.randint(0, num_embs, size=(4,))
    dgl_value = dgl_emb(idx, device).to(th.device('cpu'))
    torch_value = torch_emb(idx)
    labels = th.zeros((4,)).long()

    dgl_adam.zero_grad()
    torch_adam.zero_grad()
    dgl_loss = th.nn.functional.cross_entropy(dgl_value, labels)
    torch_loss = th.nn.functional.cross_entropy(torch_value, labels)
    dgl_loss.backward()
    torch_loss.backward()

    dgl_adam.step()
    torch_adam.step()
    assert F.allclose(dgl_emb.weight, torch_emb.weight)

    # Can not test second step
    # Pytorch sparseAdam maintains a global step
    # DGL sparseAdam use a per embedding step



130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
def test_sparse_adam_zero_step():
    num_embs = 10
    emb_dim = 4
    device=F.ctx()
    dgl_emb = NodeEmbedding(num_embs, emb_dim, 'test')
    torch_emb = th.nn.Embedding(num_embs, emb_dim, sparse=True)
    dgl_emb_zero = NodeEmbedding(num_embs, emb_dim, 'test2')
    torch_emb_zero = th.nn.Embedding(num_embs, emb_dim, sparse=True)
    th.manual_seed(0)
    th.nn.init.uniform_(torch_emb.weight, 0, 1.0)
    th.nn.init.uniform_(torch_emb_zero.weight, 0, 1.0)
    th.manual_seed(0)
    th.nn.init.uniform_(dgl_emb.weight, 0, 1.0)
    th.nn.init.uniform_(dgl_emb_zero.weight, 0, 1.0)

    dgl_adam = SparseAdam(params=[dgl_emb, dgl_emb_zero], lr=0.01)
    torch_adam = th.optim.SparseAdam(
        list(torch_emb.parameters()) + list(torch_emb_zero.parameters()), lr=0.01)

    # first step
    idx = th.randint(0, num_embs, size=(4,))
    dgl_value = dgl_emb(idx, device).to(th.device('cpu'))
    torch_value = torch_emb(idx)
    labels = th.ones((4,)).long()

    dgl_adam.zero_grad()
    torch_adam.zero_grad()
    dgl_loss = th.nn.functional.cross_entropy(dgl_value, labels)
    torch_loss = th.nn.functional.cross_entropy(torch_value, labels)
    dgl_loss.backward()
    torch_loss.backward()

    dgl_adam.step()
    torch_adam.step()
    assert F.allclose(dgl_emb.weight, torch_emb.weight)

def initializer(emb):
    th.manual_seed(0)
    emb.uniform_(-1.0, 1.0)
    return emb

172
173
def start_sparse_adam_worker(rank, device, world_size, weight, tensor_dev='cpu', has_zero_grad=False,
                             backend='gloo', num_embs=128, emb_dim=10):
174
175
176
    print('start sparse worker for adam {}'.format(rank))
    dist_init_method = 'tcp://{master_ip}:{master_port}'.format(
        master_ip='127.0.0.1', master_port='12345')
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

    if device.type == 'cuda':
        th.cuda.set_device(device)

    th.distributed.init_process_group(backend=backend,
                                      init_method=dist_init_method,
                                      world_size=world_size,
                                      rank=rank)

    init_weight = th.empty((num_embs, emb_dim))
    th.manual_seed(0)
    th.nn.init.uniform_(init_weight, -1.0, 1.0)
    dgl_emb = NodeEmbedding(num_embs, emb_dim, 'test', init_func=initializer, device=tensor_dev)
    dgl_emb.all_set_embedding(init_weight)

    if has_zero_grad:
        dgl_emb_zero = NodeEmbedding(num_embs, emb_dim, 'zero', init_func=initializer, device=tensor_dev)
        dgl_adam = SparseAdam(params=[dgl_emb, dgl_emb_zero], lr=0.01)
    else:
        dgl_adam = SparseAdam(params=[dgl_emb], lr=0.01)

    start = (num_embs // world_size) * rank
    end = (num_embs // world_size) * (rank + 1)
    th.manual_seed(rank)
    idx = th.randint(start, end, size=(4,)).to(tensor_dev)
    dgl_value = dgl_emb(idx, device)
    labels = th.ones((4,)).long().to(device)
    dgl_loss = th.nn.functional.cross_entropy(dgl_value, labels)
    dgl_adam.zero_grad()
    dgl_loss.backward()
    dgl_adam.step()
    th.distributed.barrier()
    dgl_weight = dgl_emb.all_get_embedding().detach()
    after_step = dgl_emb(idx, device).cpu()

    if rank == 0:
        dgl_value = dgl_value.detach().cpu()
        assert F.allclose(dgl_value, after_step) is False
        weight[:] = dgl_weight[:]
    th.distributed.barrier()

def start_torch_adam_worker(rank, world_size, weight, has_zero_grad=False,
                            num_embs=128, emb_dim=10):
    print('start sparse worker for adam {}'.format(rank))
    dist_init_method = 'tcp://{master_ip}:{master_port}'.format(
        master_ip='127.0.0.1', master_port='12345')
    backend='gloo'
224
225
226
227
228
229
230
231
232
233
234
235

    th.distributed.init_process_group(backend=backend,
                                      init_method=dist_init_method,
                                      world_size=world_size,
                                      rank=rank)

    torch_emb = th.nn.Embedding(num_embs, emb_dim, sparse=True)
    th.manual_seed(0)
    th.nn.init.uniform_(torch_emb.weight, -1.0, 1.0)
    torch_emb = th.nn.parallel.DistributedDataParallel(torch_emb)
    if has_zero_grad:
        torch_emb_zero = th.nn.Embedding(num_embs, emb_dim, sparse=True)
236
        torch_emb_zero = torch_emb_zero.to(tensor_dev)
237
238
239
240
241
242
243
244
245
246
247
        th.manual_seed(0)
        th.nn.init.uniform_(torch_emb_zero.weight, -1.0, 1.0)
        torch_emb_zero = th.nn.parallel.DistributedDataParallel(torch_emb_zero)
        torch_adam = th.optim.SparseAdam(
            list(torch_emb.module.parameters()) + list(torch_emb_zero.module.parameters()),
            lr=0.01)
    else:
        torch_adam = th.optim.SparseAdam(list(torch_emb.module.parameters()), lr=0.01)

    start = (num_embs // world_size) * rank
    end = (num_embs // world_size) * (rank + 1)
248
    th.manual_seed(rank)
249
250
    idx = th.randint(start, end, size=(4,))
    labels = th.ones((4,)).long()
251
    torch_value = torch_emb(idx)
252
253
254
255
    torch_loss = th.nn.functional.cross_entropy(torch_value, labels)
    torch_adam.zero_grad()
    torch_loss.backward()
    torch_adam.step()
256
257
    th.distributed.barrier()

258
    if rank == 0:
259
        weight[:] = torch_emb.module.weight.cpu()[:]
260
261
262
    th.distributed.barrier()

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
Jinjing Zhou's avatar
Jinjing Zhou committed
263
@unittest.skipIf(F.ctx().type != 'cpu', reason='cpu only test')
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
@pytest.mark.parametrize("num_workers", [2, 4])
def test_multiprocess_cpu_sparse_adam(num_workers):
    backend = 'gloo'
    worker_list = []
    num_embs=128
    emb_dim=10
    dgl_weight = th.empty((num_embs, emb_dim))
    ctx = mp.get_context('spawn')
    for i in range(num_workers):
        device = F.ctx()
        p = ctx.Process(target=start_sparse_adam_worker,
                        args=(i, device, num_workers, dgl_weight, th.device('cpu'), True, backend))
        p.start()
        worker_list.append(p)
    for p in worker_list:
        p.join()

    worker_list = []
    torch_weight = th.empty((num_embs, emb_dim))
    for i in range(num_workers):
        p = ctx.Process(target=start_torch_adam_worker,
                        args=(i, num_workers, torch_weight, False))
        p.start()
        worker_list.append(p)
    for p in worker_list:
        p.join()

    assert F.allclose(dgl_weight, torch_weight)

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(F.ctx().type == 'cpu', reason='gpu only test')
295
@pytest.mark.parametrize("num_workers", [2, 4, 8])
296
297
@pytest.mark.parametrize("backend", ['nccl', 'gloo'])
def test_multiprocess_sparse_adam(num_workers, backend):
298
299
300
    if F.ctx().type == 'cuda' and th.cuda.device_count() < num_workers:
        pytest.skip("Not enough GPUs to run test.")

301
    worker_list = []
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
    num_embs=128
    emb_dim=10
    dgl_weight = th.empty((num_embs, emb_dim))
    ctx = mp.get_context('spawn')
    for i in range(num_workers):
        device = F.ctx()
        if device.type == 'cuda':
            # make sure each process has a unique GPU
            device = th.device(i)
        p = ctx.Process(target=start_sparse_adam_worker,
                        args=(i, device, num_workers, dgl_weight, th.device('cpu'), True, backend))
        p.start()
        worker_list.append(p)
    for p in worker_list:
        p.join()
317

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
    worker_list = []
    torch_weight = th.empty((num_embs, emb_dim))
    for i in range(num_workers):
        p = ctx.Process(target=start_torch_adam_worker,
                        args=(i, num_workers, torch_weight, False))
        p.start()
        worker_list.append(p)
    for p in worker_list:
        p.join()

    assert F.allclose(dgl_weight, torch_weight)

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(F.ctx().type == 'cpu', reason='cuda tensor is not supported for cpu')
@pytest.mark.parametrize("num_workers", [2, 4, 8])
def test_multiprocess_sparse_adam_cuda_tensor(num_workers):
    if F.ctx().type == 'cpu':
        pytest.skip("Do not test CPU")
    if F.ctx().type == 'cuda' and th.cuda.device_count() < num_workers:
        pytest.skip("Not enough GPUs to run test.")

    backend = 'nccl'
    worker_list = []
    num_embs=128
    emb_dim=10
    dgl_weight = th.empty((num_embs, emb_dim))
344
345
    ctx = mp.get_context('spawn')
    for i in range(num_workers):
346
        device = th.device(i)
347
        p = ctx.Process(target=start_sparse_adam_worker,
348
                        args=(i, device, num_workers, dgl_weight, device, False, backend))
349
350
        p.start()
        worker_list.append(p)
351
352
    for p in worker_list:
        p.join()
353

354
355
356
357
358
359
360
    worker_list = []
    torch_weight = th.empty((num_embs, emb_dim))
    for i in range(num_workers):
        p = ctx.Process(target=start_torch_adam_worker,
                        args=(i, num_workers, torch_weight, False))
        p.start()
        worker_list.append(p)
361
362
363
    for p in worker_list:
        p.join()

364
365
    assert F.allclose(dgl_weight, torch_weight)

366
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
Jinjing Zhou's avatar
Jinjing Zhou committed
367
@unittest.skipIf(F.ctx().type != 'cpu', reason='cpu only test')
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
@pytest.mark.parametrize("num_workers", [2, 4])
def test_multiprocess_sparse_adam_cpu_zero_step(num_workers):
    backend = 'gloo'

    worker_list = []
    num_embs=128
    emb_dim=10
    dgl_weight = th.empty((num_embs, emb_dim))
    ctx = mp.get_context('spawn')
    for i in range(num_workers):
        device = F.ctx()
        p = ctx.Process(target=start_sparse_adam_worker,
                        args=(i, device, num_workers, dgl_weight, th.device('cpu'), True, backend))
        p.start()
        worker_list.append(p)
    for p in worker_list:
        p.join()

    worker_list = []
    torch_weight = th.empty((num_embs, emb_dim))
    for i in range(num_workers):
        p = ctx.Process(target=start_torch_adam_worker,
                        args=(i, num_workers, torch_weight, False))
        p.start()
        worker_list.append(p)
    for p in worker_list:
        p.join()

    assert F.allclose(dgl_weight, torch_weight)

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(F.ctx().type == 'cpu', reason='gpu only test')
400
@pytest.mark.parametrize("num_workers", [2, 4, 8])
401
402
@pytest.mark.parametrize("backend", ['nccl', 'gloo'])
def test_multiprocess_sparse_adam_zero_step(num_workers, backend):
403
404
405
    if F.ctx().type == 'cuda' and th.cuda.device_count() < num_workers:
        pytest.skip("Not enough GPUs to run test.")

406
    worker_list = []
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
    num_embs=128
    emb_dim=10
    dgl_weight = th.empty((num_embs, emb_dim))
    ctx = mp.get_context('spawn')
    for i in range(num_workers):
        device = F.ctx()
        if device.type == 'cuda':
            # make sure each process has a unique GPU
            device = th.device(i)
        p = ctx.Process(target=start_sparse_adam_worker,
                        args=(i, device, num_workers, dgl_weight, th.device('cpu'), True, backend))
        p.start()
        worker_list.append(p)
    for p in worker_list:
        p.join()
422

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
    worker_list = []
    torch_weight = th.empty((num_embs, emb_dim))
    for i in range(num_workers):
        p = ctx.Process(target=start_torch_adam_worker,
                        args=(i, num_workers, torch_weight, False))
        p.start()
        worker_list.append(p)
    for p in worker_list:
        p.join()

    assert F.allclose(dgl_weight, torch_weight)

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(F.ctx().type == 'cpu', reason='cuda tensor is not supported for cpu')
@pytest.mark.parametrize("num_workers", [2, 4, 8])
def test_multiprocess_sparse_adam_zero_step_cuda_tensor(num_workers):
    if F.ctx().type == 'cuda' and th.cuda.device_count() < num_workers:
        pytest.skip("Not enough GPUs to run test.")

    backend = 'nccl'
    worker_list = []
    num_embs=128
    emb_dim=10
    dgl_weight = th.empty((num_embs, emb_dim))
447
448
    ctx = mp.get_context('spawn')
    for i in range(num_workers):
449
        device = th.device(i)
450
        p = ctx.Process(target=start_sparse_adam_worker,
451
                        args=(i, device, num_workers, dgl_weight, device, True, backend))
452
453
        p.start()
        worker_list.append(p)
454
455
    for p in worker_list:
        p.join()
456

457
458
459
460
461
462
463
    worker_list = []
    torch_weight = th.empty((num_embs, emb_dim))
    for i in range(num_workers):
        p = ctx.Process(target=start_torch_adam_worker,
                        args=(i, num_workers, torch_weight, False))
        p.start()
        worker_list.append(p)
464
465
466
    for p in worker_list:
        p.join()

467
468
    assert F.allclose(dgl_weight, torch_weight)

469
if __name__ == '__main__':
470
471
472
473
    test_sparse_adam(1)
    test_sparse_adam(4)
    test_sparse_adam(101)
    test_sparse_adam(1024)
474
475
    test_sparse_adam_zero_step()

476
477
478
479
480
481
482
483
484
485
486
487
488
489
    test_multiprocess_cpu_sparse_adam(2)
    test_multiprocess_cpu_sparse_adam(4)
    test_multiprocess_cpu_sparse_adam(8)
    test_multiprocess_sparse_adam_cpu_zero_step(2)

    test_multiprocess_sparse_adam(2, backend='gloo')
    test_multiprocess_sparse_adam(4, backend='gloo')
    test_multiprocess_sparse_adam(8, backend='gloo')
    test_multiprocess_sparse_adam(2, backend='nccl')
    test_multiprocess_sparse_adam(4, backend='nccl')
    test_multiprocess_sparse_adam(8, backend='nccl')

    test_multiprocess_sparse_adam_zero_step(2, backend='gloo')
    test_multiprocess_sparse_adam_zero_step(4, backend='nccl')
490

491
492
    test_multiprocess_sparse_adam_cuda_tensor(2)
    test_multiprocess_sparse_adam_zero_step_cuda_tensor(4)