test_pickle.py 6.35 KB
Newer Older
1
import networkx as nx
Gan Quan's avatar
Gan Quan committed
2
import dgl
3
import dgl.contrib as contrib
Gan Quan's avatar
Gan Quan committed
4
5
6
from dgl.frame import Frame, FrameRef, Column
from dgl.graph_index import create_graph_index
from dgl.utils import toindex
7
8
import backend as F
import dgl.function as fn
Gan Quan's avatar
Gan Quan committed
9
10
11
import pickle
import io

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
def _assert_is_identical(g, g2):
    assert g.is_multigraph == g2.is_multigraph
    assert g.is_readonly == g2.is_readonly
    assert g.number_of_nodes() == g2.number_of_nodes()
    src, dst = g.all_edges()
    src2, dst2 = g2.all_edges()
    assert F.array_equal(src, src2)
    assert F.array_equal(dst, dst2)

    assert len(g.ndata) == len(g2.ndata)
    assert len(g.edata) == len(g2.edata)
    for k in g.ndata:
        assert F.allclose(g.ndata[k], g2.ndata[k])
    for k in g.edata:
        assert F.allclose(g.edata[k], g2.edata[k])

def _assert_is_identical_nodeflow(nf1, nf2):
    assert nf1.is_multigraph == nf2.is_multigraph
    assert nf1.is_readonly == nf2.is_readonly
    assert nf1.number_of_nodes() == nf2.number_of_nodes()
    src, dst = nf1.all_edges()
    src2, dst2 = nf2.all_edges()
    assert F.array_equal(src, src2)
    assert F.array_equal(dst, dst2)

    assert nf1.num_layers == nf2.num_layers
    for i in range(nf1.num_layers):
        assert nf1.layer_size(i) == nf2.layer_size(i)
        assert nf1.layers[i].data.keys() == nf2.layers[i].data.keys()
        for k in nf1.layers[i].data:
            assert F.allclose(nf1.layers[i].data[k], nf2.layers[i].data[k])
    assert nf1.num_blocks == nf2.num_blocks
    for i in range(nf1.num_blocks):
        assert nf1.block_size(i) == nf2.block_size(i)
        assert nf1.blocks[i].data.keys() == nf2.blocks[i].data.keys()
        for k in nf1.blocks[i].data:
            assert F.allclose(nf1.blocks[i].data[k], nf2.blocks[i].data[k])

def _assert_is_identical_batchedgraph(bg1, bg2):
    _assert_is_identical(bg1, bg2)
    assert bg1.batch_size == bg2.batch_size
    assert bg1.batch_num_nodes == bg2.batch_num_nodes
    assert bg1.batch_num_edges == bg2.batch_num_edges

def _assert_is_identical_index(i1, i2):
    assert i1.slice_data() == i2.slice_data()
    assert F.array_equal(i1.tousertensor(), i2.tousertensor())

Gan Quan's avatar
Gan Quan committed
60
61
62
63
64
65
66
67
68
69
def _reconstruct_pickle(obj):
    f = io.BytesIO()
    pickle.dump(obj, f)
    f.seek(0)
    obj = pickle.load(f)
    f.close()

    return obj

def test_pickling_index():
70
    # normal index
Gan Quan's avatar
Gan Quan committed
71
72
73
74
    i = toindex([1, 2, 3])
    i.tousertensor()
    i.todgltensor() # construct a dgl tensor which is unpicklable
    i2 = _reconstruct_pickle(i)
75
    _assert_is_identical_index(i, i2)
Gan Quan's avatar
Gan Quan committed
76

77
78
79
80
    # slice index
    i = toindex(slice(5, 10))
    i2 = _reconstruct_pickle(i)
    _assert_is_identical_index(i, i2)
Gan Quan's avatar
Gan Quan committed
81
82

def test_pickling_graph_index():
83
    gi = create_graph_index(None, False, False)
Gan Quan's avatar
Gan Quan committed
84
85
86
87
88
89
90
91
92
    gi.add_nodes(3)
    src_idx = toindex([0, 0])
    dst_idx = toindex([1, 2])
    gi.add_edges(src_idx, dst_idx)

    gi2 = _reconstruct_pickle(gi)

    assert gi2.number_of_nodes() == gi.number_of_nodes()
    src_idx2, dst_idx2, _ = gi2.edges()
93
94
    assert F.array_equal(src_idx.tousertensor(), src_idx2.tousertensor())
    assert F.array_equal(dst_idx.tousertensor(), dst_idx2.tousertensor())
Gan Quan's avatar
Gan Quan committed
95
96
97


def test_pickling_frame():
98
99
    x = F.randn((3, 7))
    y = F.randn((3, 5))
Gan Quan's avatar
Gan Quan committed
100
101
102
103

    c = Column(x)

    c2 = _reconstruct_pickle(c)
104
    assert F.allclose(c.data, c2.data)
Gan Quan's avatar
Gan Quan committed
105
106
107
108

    fr = Frame({'x': x, 'y': y})

    fr2 = _reconstruct_pickle(fr)
109
110
    assert F.allclose(fr2['x'].data, x)
    assert F.allclose(fr2['y'].data, y)
Gan Quan's avatar
Gan Quan committed
111
112
113
114
115
116
117
118
119
120
121

    fr = Frame()


def _global_message_func(nodes):
    return {'x': nodes.data['x']}

def test_pickling_graph():
    # graph structures and frames are pickled
    g = dgl.DGLGraph()
    g.add_nodes(3)
122
123
    src = F.tensor([0, 0])
    dst = F.tensor([1, 2])
Gan Quan's avatar
Gan Quan committed
124
125
    g.add_edges(src, dst)

126
127
128
129
    x = F.randn((3, 7))
    y = F.randn((3, 5))
    a = F.randn((2, 6))
    b = F.randn((2, 4))
Gan Quan's avatar
Gan Quan committed
130
131
132
133
134
135
136
137

    g.ndata['x'] = x
    g.ndata['y'] = y
    g.edata['a'] = a
    g.edata['b'] = b

    # registered functions are pickled
    g.register_message_func(_global_message_func)
138
    reduce_func = fn.sum('x', 'x')
Gan Quan's avatar
Gan Quan committed
139
140
141
142
143
144
145
146
147
148
149
150
    g.register_reduce_func(reduce_func)

    # custom attributes should be pickled
    g.foo = 2

    new_g = _reconstruct_pickle(g)

    _assert_is_identical(g, new_g)
    assert new_g.foo == 2
    assert new_g._message_func == _global_message_func
    assert isinstance(new_g._reduce_func, type(reduce_func))
    assert new_g._reduce_func._name == 'sum'
151
    assert new_g._reduce_func.reduce_op == F.sum
Gan Quan's avatar
Gan Quan committed
152
153
154
155
156
157
    assert new_g._reduce_func.msg_field == 'x'
    assert new_g._reduce_func.out_field == 'x'

    # test batched graph with partial set case
    g2 = dgl.DGLGraph()
    g2.add_nodes(4)
158
159
    src2 = F.tensor([0, 1])
    dst2 = F.tensor([2, 3])
Gan Quan's avatar
Gan Quan committed
160
161
    g2.add_edges(src2, dst2)

162
163
164
165
    x2 = F.randn((4, 7))
    y2 = F.randn((3, 5))
    a2 = F.randn((2, 6))
    b2 = F.randn((2, 4))
Gan Quan's avatar
Gan Quan committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

    g2.ndata['x'] = x2
    g2.nodes[[0, 1, 3]].data['y'] = y2
    g2.edata['a'] = a2
    g2.edata['b'] = b2

    bg = dgl.batch([g, g2])

    bg2 = _reconstruct_pickle(bg)

    _assert_is_identical(bg, bg2)
    new_g, new_g2 = dgl.unbatch(bg2)
    _assert_is_identical(g, new_g)
    _assert_is_identical(g2, new_g2)

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    # readonly graph
    g = dgl.DGLGraph([(0, 1), (1, 2)], readonly=True)
    new_g = _reconstruct_pickle(g)
    _assert_is_identical(g, new_g)

    # multigraph
    g = dgl.DGLGraph([(0, 1), (0, 1), (1, 2)], multigraph=True)
    new_g = _reconstruct_pickle(g)
    _assert_is_identical(g, new_g)

    # readonly multigraph
    g = dgl.DGLGraph([(0, 1), (0, 1), (1, 2)], multigraph=True, readonly=True)
    new_g = _reconstruct_pickle(g)
    _assert_is_identical(g, new_g)

196
197
198
199
200
201
202
203
204
def test_pickling_nodeflow():
    elist = [(0, 1), (1, 2), (2, 3), (3, 0)]
    g = dgl.DGLGraph(elist, readonly=True)
    g.ndata['x'] = F.randn((4, 5))
    g.edata['y'] = F.randn((4, 3))
    nf = contrib.sampling.sampler.create_full_nodeflow(g, 5)
    nf.copy_from_parent()  # add features
    new_nf = _reconstruct_pickle(nf)
    _assert_is_identical_nodeflow(nf, new_nf)
Gan Quan's avatar
Gan Quan committed
205

206
207
208
209
210
211
212
213
214
def test_pickling_batched_graph():
    glist = [nx.path_graph(i + 5) for i in range(5)]
    glist = [dgl.DGLGraph(g) for g in glist]
    bg = dgl.batch(glist)
    bg.ndata['x'] = F.randn((35, 5))
    bg.edata['y'] = F.randn((60, 3))
    new_bg = _reconstruct_pickle(bg)
    _assert_is_identical_batchedgraph(bg, new_bg)

Gan Quan's avatar
Gan Quan committed
215
216
217
218
219
if __name__ == '__main__':
    test_pickling_index()
    test_pickling_graph_index()
    test_pickling_frame()
    test_pickling_graph()
220
    test_pickling_nodeflow()
221
    test_pickling_batched_graph()