test_propagate.py 2.37 KB
Newer Older
1
2
import dgl
import networkx as nx
3
import backend as F
4
5
6
7
8
9
import utils as U

def mfunc(edges):
    return {'m' : edges.src['x']}

def rfunc(nodes):
10
    msg = F.sum(nodes.mailbox['m'], 1)
11
12
13
14
    return {'x' : nodes.data['x'] + msg}

def test_prop_nodes_bfs():
    g = dgl.DGLGraph(nx.path_graph(5))
15
    g = dgl.graph(g.edges())
16
    g.ndata['x'] = F.ones((5, 2))
17
    dgl.prop_nodes_bfs(g, 0, message_func=mfunc, reduce_func=rfunc, apply_node_func=None)
18
    # pull nodes using bfs order will result in a cumsum[i] + data[i] + data[i+1]
19
20
    assert F.allclose(g.ndata['x'],
            F.tensor([[2., 2.], [4., 4.], [6., 6.], [8., 8.], [9., 9.]]))
21
22
23

def test_prop_edges_dfs():
    g = dgl.DGLGraph(nx.path_graph(5))
24
    g = dgl.graph(g.edges())
25
    g.ndata['x'] = F.ones((5, 2))
26
    dgl.prop_edges_dfs(g, 0, message_func=mfunc, reduce_func=rfunc, apply_node_func=None)
27
    # snr using dfs results in a cumsum
28
29
    assert F.allclose(g.ndata['x'],
            F.tensor([[1., 1.], [2., 2.], [3., 3.], [4., 4.], [5., 5.]]))
30

31
    g.ndata['x'] = F.ones((5, 2))
32
    dgl.prop_edges_dfs(g, 0, has_reverse_edge=True, message_func=mfunc, reduce_func=rfunc, apply_node_func=None)
33
    # result is cumsum[i] + cumsum[i-1]
34
35
    assert F.allclose(g.ndata['x'],
            F.tensor([[1., 1.], [3., 3.], [5., 5.], [7., 7.], [9., 9.]]))
36

37
    g.ndata['x'] = F.ones((5, 2))
38
    dgl.prop_edges_dfs(g, 0, has_nontree_edge=True, message_func=mfunc, reduce_func=rfunc, apply_node_func=None)
39
    # result is cumsum[i] + cumsum[i+1]
40
41
    assert F.allclose(g.ndata['x'],
            F.tensor([[3., 3.], [5., 5.], [7., 7.], [9., 9.], [5., 5.]]))
42
43
44
45

def test_prop_nodes_topo():
    # bi-directional chain
    g = dgl.DGLGraph(nx.path_graph(5))
46
    g = dgl.graph(g.edges())
47
48
49
50
51
52
53
54
55
    assert U.check_fail(dgl.prop_nodes_topo, g)  # has loop

    # tree
    tree = dgl.DGLGraph()
    tree.add_nodes(5)
    tree.add_edge(1, 0)
    tree.add_edge(2, 0)
    tree.add_edge(3, 2)
    tree.add_edge(4, 2)
56
    tree = dgl.graph(tree.edges())
57
    # init node feature data
58
    tree.ndata['x'] = F.zeros((5, 2))
59
    # set all leaf nodes to be ones
60
    tree.nodes[[1, 3, 4]].data['x'] = F.ones((3, 2))
61
    dgl.prop_nodes_topo(tree, message_func=mfunc, reduce_func=rfunc, apply_node_func=None)
62
    # root node get the sum
63
    assert F.allclose(tree.nodes[0].data['x'], F.tensor([[3., 3.]]))
64
65
66
67
68

if __name__ == '__main__':
    test_prop_nodes_bfs()
    test_prop_edges_dfs()
    test_prop_nodes_topo()