train.py 4.98 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import argparse
import time
import numpy as np
import networkx as nx
import tensorflow as tf
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
from gcn import GCN


def evaluate(model, features, labels, mask):
    logits = model(features, training=False)
    logits = logits[mask]
    labels = labels[mask]
    indices = tf.math.argmax(logits, axis=1)
    acc = tf.reduce_mean(tf.cast(indices == labels, dtype=tf.float32))
    return acc.numpy().item()


def main(args):
    # load and preprocess dataset
    data = load_data(args)

    if args.gpu < 0:
        device = "/cpu:0"
    else:
        device = "/gpu:{}".format(args.gpu)

    with tf.device(device):
        features = tf.convert_to_tensor(data.features, dtype=tf.float32)
        labels = tf.convert_to_tensor(data.labels, dtype=tf.int64)
        train_mask = tf.convert_to_tensor(data.train_mask, dtype=tf.bool)
        val_mask = tf.convert_to_tensor(data.val_mask, dtype=tf.bool)
        test_mask = tf.convert_to_tensor(data.test_mask, dtype=tf.bool)
        in_feats = features.shape[1]
        n_classes = data.num_labels
        n_edges = data.graph.number_of_edges()
        print("""----Data statistics------'
        #Edges %d
        #Classes %d
        #Train samples %d
        #Val samples %d
        #Test samples %d""" %
              (n_edges, n_classes,
               train_mask.numpy().sum(),
               val_mask.numpy().sum(),
               test_mask.numpy().sum()))

        # graph preprocess and calculate normalization factor
        g = data.graph
        if args.self_loop:
            g.remove_edges_from(nx.selfloop_edges(g))
            g.add_edges_from(zip(g.nodes(), g.nodes()))
        g = DGLGraph(g)
        n_edges = g.number_of_edges()
        # normalization
        degs = tf.cast(tf.identity(g.in_degrees()), dtype=tf.float32)
        norm = tf.math.pow(degs, -0.5)
        norm = tf.where(tf.math.is_inf(norm), tf.zeros_like(norm), norm)

        g.ndata['norm'] = tf.expand_dims(norm, -1)

        # create GCN model
        model = GCN(g,
                    in_feats,
                    args.n_hidden,
                    n_classes,
                    args.n_layers,
                    tf.nn.relu,
                    args.dropout)

        loss_fcn = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=True)
        # use optimizer
        optimizer = tf.keras.optimizers.Adam(
            learning_rate=args.lr, epsilon=1e-8)

        # initialize graph
        dur = []
        for epoch in range(args.n_epochs):
            if epoch >= 3:
                t0 = time.time()
            # forward
            with tf.GradientTape() as tape:
                logits = model(features)
                loss_value = loss_fcn(labels[train_mask], logits[train_mask])
                # Manually Weight Decay
                # We found Tensorflow has a different implementation on weight decay 
                # of Adam(W) optimizer with PyTorch. And this results in worse results.
                # Manually adding weights to the loss to do weight decay solves this problem.
                for weight in model.trainable_weights:
                    loss_value = loss_value + \
                        args.weight_decay*tf.nn.l2_loss(weight)

                grads = tape.gradient(loss_value, model.trainable_weights)
                optimizer.apply_gradients(zip(grads, model.trainable_weights))
            if epoch >= 3:
                dur.append(time.time() - t0)

            acc = evaluate(model, features, labels, val_mask)
            print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
                  "ETputs(KTEPS) {:.2f}". format(epoch, np.mean(dur), loss_value.numpy().item(),
                                                 acc, n_edges / np.mean(dur) / 1000))

        acc = evaluate(model, features, labels, test_mask)
        print("Test Accuracy {:.4f}".format(acc))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GCN')
    register_data_args(parser)
    parser.add_argument("--dropout", type=float, default=0.5,
                        help="dropout probability")
    parser.add_argument("--gpu", type=int, default=-1,
                        help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
                        help="learning rate")
    parser.add_argument("--n-epochs", type=int, default=200,
                        help="number of training epochs")
    parser.add_argument("--n-hidden", type=int, default=16,
                        help="number of hidden gcn units")
    parser.add_argument("--n-layers", type=int, default=1,
                        help="number of hidden gcn layers")
    parser.add_argument("--weight-decay", type=float, default=5e-4,
                        help="Weight for L2 loss")
    parser.add_argument("--self-loop", action='store_true',
                        help="graph self-loop (default=False)")
    parser.set_defaults(self_loop=False)
    args = parser.parse_args()
    print(args)

    main(args)