test_pretrain.py 5.36 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import dgl
import os
import torch

from functools import partial

from dgllife.model import load_pretrained
from dgllife.utils import *

def remove_file(fname):
    if os.path.isfile(fname):
        try:
            os.remove(fname)
        except OSError:
            pass

def run_dgmg_ChEMBL(model):
    assert model(
        actions=[(0, 2), (1, 3), (0, 0), (1, 0), (2, 0), (1, 3), (0, 7)],
        rdkit_mol=True) == 'CO'
    assert model(rdkit_mol=False) is None
    model.eval()
    assert model(rdkit_mol=True) is not None

def run_dgmg_ZINC(model):
    assert model(
        actions=[(0, 2), (1, 3), (0, 5), (1, 0), (2, 0), (1, 3), (0, 9)],
        rdkit_mol=True) == 'CO'
    assert model(rdkit_mol=False) is None
    model.eval()
    assert model(rdkit_mol=True) is not None

def test_dgmg():
    model = load_pretrained('DGMG_ZINC_canonical')
    run_dgmg_ZINC(model)
    model = load_pretrained('DGMG_ZINC_random')
    run_dgmg_ZINC(model)
    model = load_pretrained('DGMG_ChEMBL_canonical')
    run_dgmg_ChEMBL(model)
    model = load_pretrained('DGMG_ChEMBL_random')
    run_dgmg_ChEMBL(model)

    remove_file('DGMG_ChEMBL_canonical_pre_trained.pth')
    remove_file('DGMG_ChEMBL_random_pre_trained.pth')
    remove_file('DGMG_ZINC_canonical_pre_trained.pth')
    remove_file('DGMG_ZINC_random_pre_trained.pth')

def test_jtnn():
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    model = load_pretrained('JTNN_ZINC').to(device)

    remove_file('JTNN_ZINC_pre_trained.pth')

def test_gcn_tox21():
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    node_featurizer = CanonicalAtomFeaturizer()
    g1 = smiles_to_bigraph('CO', node_featurizer=node_featurizer)
    g2 = smiles_to_bigraph('CCO', node_featurizer=node_featurizer)
    bg = dgl.batch([g1, g2])

    model = load_pretrained('GCN_Tox21').to(device)
    model(bg.to(device), bg.ndata.pop('h').to(device))
    model.eval()
    model(g1.to(device), g1.ndata.pop('h').to(device))

    remove_file('GCN_Tox21_pre_trained.pth')

def test_gat_tox21():
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    node_featurizer = CanonicalAtomFeaturizer()
    g1 = smiles_to_bigraph('CO', node_featurizer=node_featurizer)
    g2 = smiles_to_bigraph('CCO', node_featurizer=node_featurizer)
    bg = dgl.batch([g1, g2])

    model = load_pretrained('GAT_Tox21').to(device)
    model(bg.to(device), bg.ndata.pop('h').to(device))
    model.eval()
    model(g1.to(device), g1.ndata.pop('h').to(device))

    remove_file('GAT_Tox21_pre_trained.pth')

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
def test_weave_tox21():
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    node_featurizer = WeaveAtomFeaturizer()
    edge_featurizer = WeaveEdgeFeaturizer(max_distance=2)
    g1 = smiles_to_complete_graph('CO', node_featurizer=node_featurizer,
                                  edge_featurizer=edge_featurizer, add_self_loop=True)
    g2 = smiles_to_complete_graph('CCO', node_featurizer=node_featurizer,
                                  edge_featurizer=edge_featurizer, add_self_loop=True)
    bg = dgl.batch([g1, g2])

    model = load_pretrained('Weave_Tox21').to(device)
    model(bg.to(device), bg.ndata.pop('h').to(device), bg.edata.pop('e').to(device))
    model.eval()
    model(g1.to(device), g1.ndata.pop('h').to(device), g1.edata.pop('e').to(device))

    remove_file('Weave_Tox21_pre_trained.pth')

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
def chirality(atom):
    try:
        return one_hot_encoding(atom.GetProp('_CIPCode'), ['R', 'S']) + \
               [atom.HasProp('_ChiralityPossible')]
    except:
        return [False, False] + [atom.HasProp('_ChiralityPossible')]

def test_attentivefp_aromaticity():
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    node_featurizer = BaseAtomFeaturizer(
        featurizer_funcs={'hv': ConcatFeaturizer([
            partial(atom_type_one_hot, allowable_set=[
                'B', 'C', 'N', 'O', 'F', 'Si', 'P', 'S', 'Cl', 'As', 'Se', 'Br', 'Te', 'I', 'At'],
                    encode_unknown=True),
            partial(atom_degree_one_hot, allowable_set=list(range(6))),
            atom_formal_charge, atom_num_radical_electrons,
            partial(atom_hybridization_one_hot, encode_unknown=True),
            lambda atom: [0], # A placeholder for aromatic information,
            atom_total_num_H_one_hot, chirality
        ],
        )}
    )
    edge_featurizer = BaseBondFeaturizer({
        'he': lambda bond: [0 for _ in range(10)]
    })
    g1 = smiles_to_bigraph('CO', node_featurizer=node_featurizer,
                           edge_featurizer=edge_featurizer)
    g2 = smiles_to_bigraph('CCO', node_featurizer=node_featurizer,
                           edge_featurizer=edge_featurizer)
    bg = dgl.batch([g1, g2])

    model = load_pretrained('AttentiveFP_Aromaticity').to(device)
    model(bg.to(device), bg.ndata.pop('hv').to(device), bg.edata.pop('he').to(device))
    model.eval()
    model(g1.to(device), g1.ndata.pop('hv').to(device), g1.edata.pop('he').to(device))

    remove_file('AttentiveFP_Aromaticity_pre_trained.pth')

if __name__ == '__main__':
    test_dgmg()
    test_jtnn()
    test_gcn_tox21()
    test_gat_tox21()
    test_attentivefp_aromaticity()