point_head.py 6.51 KB
Newer Older
limm's avatar
limm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import fvcore.nn.weight_init as weight_init
import torch
from torch import nn
from torch.nn import functional as F

from detectron2.layers import ShapeSpec, cat
from detectron2.structures import BitMasks
from detectron2.utils.events import get_event_storage
from detectron2.utils.registry import Registry

from .point_features import point_sample

POINT_HEAD_REGISTRY = Registry("POINT_HEAD")
POINT_HEAD_REGISTRY.__doc__ = """
Registry for point heads, which makes prediction for a given set of per-point features.

The registered object will be called with `obj(cfg, input_shape)`.
"""


def roi_mask_point_loss(mask_logits, instances, points_coord):
    """
    Compute the point-based loss for instance segmentation mask predictions.

    Args:
        mask_logits (Tensor): A tensor of shape (R, C, P) or (R, 1, P) for class-specific or
            class-agnostic, where R is the total number of predicted masks in all images, C is the
            number of foreground classes, and P is the number of points sampled for each mask.
            The values are logits.
        instances (list[Instances]): A list of N Instances, where N is the number of images
            in the batch. These instances are in 1:1 correspondence with the `mask_logits`. So, i_th
            elememt of the list contains R_i objects and R_1 + ... + R_N is equal to R.
            The ground-truth labels (class, box, mask, ...) associated with each instance are stored
            in fields.
        points_coords (Tensor): A tensor of shape (R, P, 2), where R is the total number of
            predicted masks and P is the number of points for each mask. The coordinates are in
            the image pixel coordinate space, i.e. [0, H] x [0, W].
    Returns:
        point_loss (Tensor): A scalar tensor containing the loss.
    """
    assert len(instances) == 0 or isinstance(
        instances[0].gt_masks, BitMasks
    ), "Point head works with GT in 'bitmask' format only. Set INPUT.MASK_FORMAT to 'bitmask'."
    with torch.no_grad():
        cls_agnostic_mask = mask_logits.size(1) == 1
        total_num_masks = mask_logits.size(0)

        gt_classes = []
        gt_mask_logits = []
        idx = 0
        for instances_per_image in instances:
            if not cls_agnostic_mask:
                gt_classes_per_image = instances_per_image.gt_classes.to(dtype=torch.int64)
                gt_classes.append(gt_classes_per_image)

            gt_bit_masks = instances_per_image.gt_masks.tensor
            h, w = instances_per_image.gt_masks.image_size
            scale = torch.tensor([w, h], dtype=torch.float, device=gt_bit_masks.device)
            points_coord_grid_sample_format = (
                points_coord[idx : idx + len(instances_per_image)] / scale
            )
            idx += len(instances_per_image)
            gt_mask_logits.append(
                point_sample(
                    gt_bit_masks.to(torch.float32).unsqueeze(1),
                    points_coord_grid_sample_format,
                    align_corners=False,
                ).squeeze(1)
            )
        gt_mask_logits = cat(gt_mask_logits)

    # torch.mean (in binary_cross_entropy_with_logits) doesn't
    # accept empty tensors, so handle it separately
    if gt_mask_logits.numel() == 0:
        return mask_logits.sum() * 0

    if cls_agnostic_mask:
        mask_logits = mask_logits[:, 0]
    else:
        indices = torch.arange(total_num_masks)
        gt_classes = cat(gt_classes, dim=0)
        mask_logits = mask_logits[indices, gt_classes]

    # Log the training accuracy (using gt classes and 0.0 threshold for the logits)
    mask_accurate = (mask_logits > 0.0) == gt_mask_logits.to(dtype=torch.uint8)
    mask_accuracy = mask_accurate.nonzero().size(0) / mask_accurate.numel()
    get_event_storage().put_scalar("point_rend/accuracy", mask_accuracy)

    point_loss = F.binary_cross_entropy_with_logits(
        mask_logits, gt_mask_logits.to(dtype=torch.float32), reduction="mean"
    )
    return point_loss


@POINT_HEAD_REGISTRY.register()
class StandardPointHead(nn.Module):
    """
    A point head multi-layer perceptron which we model with conv1d layers with kernel 1. The head
    takes both fine-grained and coarse prediction features as its input.
    """

    def __init__(self, cfg, input_shape: ShapeSpec):
        """
        The following attributes are parsed from config:
            fc_dim: the output dimension of each FC layers
            num_fc: the number of FC layers
            coarse_pred_each_layer: if True, coarse prediction features are concatenated to each
                layer's input
        """
        super(StandardPointHead, self).__init__()
        # fmt: off
        num_classes                 = cfg.MODEL.POINT_HEAD.NUM_CLASSES
        fc_dim                      = cfg.MODEL.POINT_HEAD.FC_DIM
        num_fc                      = cfg.MODEL.POINT_HEAD.NUM_FC
        cls_agnostic_mask           = cfg.MODEL.POINT_HEAD.CLS_AGNOSTIC_MASK
        self.coarse_pred_each_layer = cfg.MODEL.POINT_HEAD.COARSE_PRED_EACH_LAYER
        input_channels              = input_shape.channels
        # fmt: on

        fc_dim_in = input_channels + num_classes
        self.fc_layers = []
        for k in range(num_fc):
            fc = nn.Conv1d(fc_dim_in, fc_dim, kernel_size=1, stride=1, padding=0, bias=True)
            self.add_module("fc{}".format(k + 1), fc)
            self.fc_layers.append(fc)
            fc_dim_in = fc_dim
            fc_dim_in += num_classes if self.coarse_pred_each_layer else 0

        num_mask_classes = 1 if cls_agnostic_mask else num_classes
        self.predictor = nn.Conv1d(fc_dim_in, num_mask_classes, kernel_size=1, stride=1, padding=0)

        for layer in self.fc_layers:
            weight_init.c2_msra_fill(layer)
        # use normal distribution initialization for mask prediction layer
        nn.init.normal_(self.predictor.weight, std=0.001)
        if self.predictor.bias is not None:
            nn.init.constant_(self.predictor.bias, 0)

    def forward(self, fine_grained_features, coarse_features):
        x = torch.cat((fine_grained_features, coarse_features), dim=1)
        for layer in self.fc_layers:
            x = F.relu(layer(x))
            if self.coarse_pred_each_layer:
                x = cat((x, coarse_features), dim=1)
        return self.predictor(x)


def build_point_head(cfg, input_channels):
    """
    Build a point head defined by `cfg.MODEL.POINT_HEAD.NAME`.
    """
    head_name = cfg.MODEL.POINT_HEAD.NAME
    return POINT_HEAD_REGISTRY.get(head_name)(cfg, input_channels)