coarse_mask_head.py 3.57 KB
Newer Older
limm's avatar
limm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import fvcore.nn.weight_init as weight_init
import torch
from torch import nn
from torch.nn import functional as F

from detectron2.layers import Conv2d, ShapeSpec
from detectron2.modeling import ROI_MASK_HEAD_REGISTRY


@ROI_MASK_HEAD_REGISTRY.register()
class CoarseMaskHead(nn.Module):
    """
    A mask head with fully connected layers. Given pooled features it first reduces channels and
    spatial dimensions with conv layers and then uses FC layers to predict coarse masks analogously
    to the standard box head.
    """

    def __init__(self, cfg, input_shape: ShapeSpec):
        """
        The following attributes are parsed from config:
            conv_dim: the output dimension of the conv layers
            fc_dim: the feature dimenstion of the FC layers
            num_fc: the number of FC layers
            output_side_resolution: side resolution of the output square mask prediction
        """
        super(CoarseMaskHead, self).__init__()

        # fmt: off
        self.num_classes            = cfg.MODEL.ROI_HEADS.NUM_CLASSES
        conv_dim                    = cfg.MODEL.ROI_MASK_HEAD.CONV_DIM
        self.fc_dim                 = cfg.MODEL.ROI_MASK_HEAD.FC_DIM
        num_fc                      = cfg.MODEL.ROI_MASK_HEAD.NUM_FC
        self.output_side_resolution = cfg.MODEL.ROI_MASK_HEAD.OUTPUT_SIDE_RESOLUTION
        self.input_channels         = input_shape.channels
        self.input_h                = input_shape.height
        self.input_w                = input_shape.width
        # fmt: on

        self.conv_layers = []
        if self.input_channels > conv_dim:
            self.reduce_channel_dim_conv = Conv2d(
                self.input_channels,
                conv_dim,
                kernel_size=1,
                stride=1,
                padding=0,
                bias=True,
                activation=F.relu,
            )
            self.conv_layers.append(self.reduce_channel_dim_conv)

        self.reduce_spatial_dim_conv = Conv2d(
            conv_dim, conv_dim, kernel_size=2, stride=2, padding=0, bias=True, activation=F.relu
        )
        self.conv_layers.append(self.reduce_spatial_dim_conv)

        input_dim = conv_dim * self.input_h * self.input_w
        input_dim //= 4

        self.fcs = []
        for k in range(num_fc):
            fc = nn.Linear(input_dim, self.fc_dim)
            self.add_module("coarse_mask_fc{}".format(k + 1), fc)
            self.fcs.append(fc)
            input_dim = self.fc_dim

        output_dim = self.num_classes * self.output_side_resolution * self.output_side_resolution

        self.prediction = nn.Linear(self.fc_dim, output_dim)
        # use normal distribution initialization for mask prediction layer
        nn.init.normal_(self.prediction.weight, std=0.001)
        nn.init.constant_(self.prediction.bias, 0)

        for layer in self.conv_layers:
            weight_init.c2_msra_fill(layer)
        for layer in self.fcs:
            weight_init.c2_xavier_fill(layer)

    def forward(self, x):
        # unlike BaseMaskRCNNHead, this head only outputs intermediate
        # features, because the features will be used later by PointHead.
        N = x.shape[0]
        x = x.view(N, self.input_channels, self.input_h, self.input_w)
        for layer in self.conv_layers:
            x = layer(x)
        x = torch.flatten(x, start_dim=1)
        for layer in self.fcs:
            x = F.relu(layer(x))
        return self.prediction(x).view(
            N, self.num_classes, self.output_side_resolution, self.output_side_resolution
        )