extractor.py 4.96 KB
Newer Older
limm's avatar
limm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import logging
from typing import Sequence
import torch

from detectron2.layers.nms import batched_nms
from detectron2.structures.instances import Instances

from densepose.vis.bounding_box import BoundingBoxVisualizer, ScoredBoundingBoxVisualizer
from densepose.vis.densepose import DensePoseResultsVisualizer

from .base import CompoundVisualizer

Scores = Sequence[float]


def extract_scores_from_instances(instances: Instances, select=None):
    if instances.has("scores"):
        return instances.scores if select is None else instances.scores[select]
    return None


def extract_boxes_xywh_from_instances(instances: Instances, select=None):
    if instances.has("pred_boxes"):
        boxes_xywh = instances.pred_boxes.tensor.clone()
        boxes_xywh[:, 2] -= boxes_xywh[:, 0]
        boxes_xywh[:, 3] -= boxes_xywh[:, 1]
        return boxes_xywh if select is None else boxes_xywh[select]
    return None


def create_extractor(visualizer: object):
    """
    Create an extractor for the provided visualizer
    """
    if isinstance(visualizer, CompoundVisualizer):
        extractors = [create_extractor(v) for v in visualizer.visualizers]
        return CompoundExtractor(extractors)
    elif isinstance(visualizer, DensePoseResultsVisualizer):
        return DensePoseResultExtractor()
    elif isinstance(visualizer, ScoredBoundingBoxVisualizer):
        return CompoundExtractor([extract_boxes_xywh_from_instances, extract_scores_from_instances])
    elif isinstance(visualizer, BoundingBoxVisualizer):
        return extract_boxes_xywh_from_instances
    else:
        logger = logging.getLogger(__name__)
        logger.error(f"Could not create extractor for {visualizer}")
        return None


class BoundingBoxExtractor(object):
    """
    Extracts bounding boxes from instances
    """

    def __call__(self, instances: Instances):
        boxes_xywh = extract_boxes_xywh_from_instances(instances)
        return boxes_xywh


class ScoredBoundingBoxExtractor(object):
    """
    Extracts bounding boxes from instances
    """

    def __call__(self, instances: Instances, select=None):
        scores = extract_scores_from_instances(instances)
        boxes_xywh = extract_boxes_xywh_from_instances(instances)
        if (scores is None) or (boxes_xywh is None):
            return (boxes_xywh, scores)
        if select is not None:
            scores = scores[select]
            boxes_xywh = boxes_xywh[select]
        return (boxes_xywh, scores)


class DensePoseResultExtractor(object):
    """
    Extracts DensePose result from instances
    """

    def __call__(self, instances: Instances, select=None):
        boxes_xywh = extract_boxes_xywh_from_instances(instances)
        if instances.has("pred_densepose") and (boxes_xywh is not None):
            dpout = instances.pred_densepose
            if select is not None:
                dpout = dpout[select]
                boxes_xywh = boxes_xywh[select]
            return dpout.to_result(boxes_xywh)
        else:
            return None


class CompoundExtractor(object):
    """
    Extracts data for CompoundVisualizer
    """

    def __init__(self, extractors):
        self.extractors = extractors

    def __call__(self, instances: Instances, select=None):
        datas = []
        for extractor in self.extractors:
            data = extractor(instances, select)
            datas.append(data)
        return datas


class NmsFilteredExtractor(object):
    """
    Extracts data in the format accepted by NmsFilteredVisualizer
    """

    def __init__(self, extractor, iou_threshold):
        self.extractor = extractor
        self.iou_threshold = iou_threshold

    def __call__(self, instances: Instances, select=None):
        scores = extract_scores_from_instances(instances)
        boxes_xywh = extract_boxes_xywh_from_instances(instances)
        if boxes_xywh is None:
            return None
        select_local_idx = batched_nms(
            boxes_xywh,
            scores,
            torch.zeros(len(scores), dtype=torch.int32),
            iou_threshold=self.iou_threshold,
        ).squeeze()
        select_local = torch.zeros(len(boxes_xywh), dtype=torch.bool, device=boxes_xywh.device)
        select_local[select_local_idx] = True
        select = select_local if select is None else (select & select_local)
        return self.extractor(instances, select=select)


class ScoreThresholdedExtractor(object):
    """
    Extracts data in the format accepted by ScoreThresholdedVisualizer
    """

    def __init__(self, extractor, min_score):
        self.extractor = extractor
        self.min_score = min_score

    def __call__(self, instances: Instances, select=None):
        scores = extract_scores_from_instances(instances)
        if scores is None:
            return None
        select_local = scores > self.min_score
        select = select_local if select is None else (select & select_local)
        data = self.extractor(instances, select=select)
        return data