DeepSpeed delivers extreme-scale model training for everyone, from data scientists training on massive supercomputers to those training on low-end clusters or even on a single GPU:
<td>--</td>
* Extreme scale: Using current generation of GPU clusters with hundreds of devices, 3D parallelism of DeepSpeed can efficiently train deep learning models with trillions of parameters.
</tr>
* Extremely memory efficient: With just a single GPU, ZeRO-Offload of DeepSpeed can train models with over 10B parameters, 10x bigger than the state of arts, democratizing multi-billion-parameter model training such that many deep learning scientists can explore bigger and better models.
<tr>
* Extremely long sequence length: Sparse attention of DeepSpeed powers an order-of-magnitude longer input sequence and obtains up to 6x faster execution comparing with dense transformers.
<td>Transformer</td>
* Extremely communication efficient: 3D parallelism improves communication efficiency allows users to train multi-billion-parameter models 2–7x faster on clusters with limited network bandwidth. 1-bit Adam reduces communication volume by up to 5x while achieving similar convergence efficiency to Adam, allowing for scaling to different types of GPU clusters and networks.
[AI at Scale](https://www.microsoft.com/en-us/research/project/ai-at-scale/)
<td>继承的TRANSFORMER中的文件,支持列表同上</td>
initiative to enable next-generation AI capabilities at scale, where you can find more
</tr>
information [here](https://innovation.microsoft.com/en-us/exploring-ai-at-scale).
<tr>
<td>SparseAttn</td>
**_For further documentation, tutorials, and technical deep-dives please see [deepspeed.ai](https://www.deepspeed.ai/)!_**
<td>DS_BUILD_SPARSE_ATTN</td>
<td>Success</td>
<td>--</td>
# News
</tr>
*[2021/03/08] [ZeRO-3 Offload: Scale your models to trillion parameters without code changes while leveraging both CPUs & GPUs](https://www.deepspeed.ai/news/2021/03/07/zero3-offload.html)
*[2020/11/10] [Efficient and robust compressed training through progressive layer dropping](https://www.deepspeed.ai/news/2020/10/28/progressive-layer-dropping-news.html)
<td>DS_BUILD_FUSED_LAMB</td>
*[2020/09/10] [DeepSpeed v0.3: Extreme-scale model training for everyone](https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/)
<td>Success</td>
*[Powering 10x longer sequences and 6x faster execution through DeepSpeed Sparse Attention](https://www.deepspeed.ai/news/2020/09/08/sparse-attention-news.html)
<td>--</td>
*[Training a trillion parameters with pipeline parallelism](https://www.deepspeed.ai/news/2020/09/08/pipeline-parallelism.html)
</tr>
*[Up to 5x less communication and 3.4x faster training through 1-bit Adam](https://www.deepspeed.ai/news/2020/09/08/onebit-adam-news.html)
<tr>
*[10x bigger model training on a single GPU with ZeRO-Offload](https://www.deepspeed.ai/news/2020/09/08/ZeRO-Offload.html)
<td>FusedAdam</td>
*[2020/08/07] [DeepSpeed Microsoft Research Webinar](https://note.microsoft.com/MSR-Webinar-DeepSpeed-Registration-On-Demand.html) is now available on-demand
| [API Documentation](https://deepspeed.readthedocs.io/en/latest/) | Generated DeepSpeed API documentation |
| [CIFAR-10 Tutorial](https://www.deepspeed.ai/tutorials/cifar-10) | Getting started with CIFAR-10 and DeepSpeed |
| [Megatron-LM Tutorial](https://www.deepspeed.ai/tutorials/megatron/) | Train GPT2 with DeepSpeed and Megatron-LM |
| [BERT Pre-training Tutorial](https://www.deepspeed.ai/tutorials/bert-pretraining/) | Pre-train BERT with DeepSpeed |
| [Learning Rate Range Test Tutorial](https://www.deepspeed.ai/tutorials/lrrt/) | Faster training with large learning rates |
| [1Cycle Tutorial](https://www.deepspeed.ai/tutorials/1Cycle/) | SOTA learning schedule in DeepSpeed |
# Contributing
DeepSpeed welcomes your contributions! Please see our
[contributing](CONTRIBUTING.md) guide for more details on formatting, testing,
etc.
## Contributor License Agreement
This project welcomes contributions and suggestions. Most contributions require you to
agree to a Contributor License Agreement (CLA) declaring that you have the right to, and
actually do, grant us the rights to use your contribution. For details, visit
https://cla.opensource.microsoft.com.
When you submit a pull request, a CLA bot will automatically determine whether you need
to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply
follow the instructions provided by the bot. You will only need to do this once across
all repos using our CLA.
## Code of Conduct
This project has adopted the [Microsoft Open Source Code of
Conduct](https://opensource.microsoft.com/codeofconduct/). For more information see the
[Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or contact
[opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
# Publications
1. Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, Yuxiong He. (2019) ZeRO: memory optimizations toward training trillion parameter models. [arXiv:1910.02054](https://arxiv.org/abs/1910.02054) and [In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC '20)](https://dl.acm.org/doi/10.5555/3433701.3433727).
2. Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. (2020) DeepSpeed: System Optimizations Enable Training Deep Learning Models with Over 100 Billion Parameters. [In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD '20, Tutorial)](https://dl.acm.org/doi/10.1145/3394486.3406703).
3. Minjia Zhang, Yuxiong He. (2020) Accelerating Training of Transformer-Based Language Models with Progressive Layer Dropping. [arXiv:2010.13369](https://arxiv.org/abs/2010.13369) and [NeurIPS 2020](https://proceedings.neurips.cc/paper/2020/hash/a1140a3d0df1c81e24ae954d935e8926-Abstract.html).
* Registration is free and all videos are available on-demand.
*[ZeRO & Fastest BERT: Increasing the scale and speed of deep learning training in DeepSpeed](https://note.microsoft.com/MSR-Webinar-DeepSpeed-Registration-On-Demand.html).
3.[DeepSpeed on AzureML](https://youtu.be/yBVXR8G8Bg8)
| [API Documentation](https://deepspeed.readthedocs.io/en/latest/) | Generated DeepSpeed API documentation |
| [CIFAR-10 Tutorial](https://www.deepspeed.ai/tutorials/cifar-10) | Getting started with CIFAR-10 and DeepSpeed |
| [Megatron-LM Tutorial](https://www.deepspeed.ai/tutorials/megatron/) | Train GPT2 with DeepSpeed and Megatron-LM |
| [BERT Pre-training Tutorial](https://www.deepspeed.ai/tutorials/bert-pretraining/) | Pre-train BERT with DeepSpeed |
| [Learning Rate Range Test Tutorial](https://www.deepspeed.ai/tutorials/lrrt/) | Faster training with large learning rates |
| [1Cycle Tutorial](https://www.deepspeed.ai/tutorials/1Cycle/) | SOTA learning schedule in DeepSpeed |
# Contributing
DeepSpeed welcomes your contributions! Please see our
[contributing](CONTRIBUTING.md) guide for more details on formatting, testing,
etc.
## Contributor License Agreement
This project welcomes contributions and suggestions. Most contributions require you to
agree to a Contributor License Agreement (CLA) declaring that you have the right to, and
actually do, grant us the rights to use your contribution. For details, visit
https://cla.opensource.microsoft.com.
When you submit a pull request, a CLA bot will automatically determine whether you need
to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply
follow the instructions provided by the bot. You will only need to do this once across
all repos using our CLA.
## Code of Conduct
This project has adopted the [Microsoft Open Source Code of
Conduct](https://opensource.microsoft.com/codeofconduct/). For more information see the
[Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or contact
[opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
# Publications
1. Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, Yuxiong He. (2019) ZeRO: memory optimizations toward training trillion parameter models. [arXiv:1910.02054](https://arxiv.org/abs/1910.02054) and [In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC '20)](https://dl.acm.org/doi/10.5555/3433701.3433727).
3. Minjia Zhang, Yuxiong He. (2020) Accelerating Training of Transformer-Based Language Models with Progressive Layer Dropping. [arXiv:2010.13369](https://arxiv.org/abs/2010.13369) and [NeurIPS 2020](https://proceedings.neurips.cc/paper/2020/hash/a1140a3d0df1c81e24ae954d935e8926-Abstract.html).
5. Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan, Samyam Rajbhandari, Conglong Li, Xiangru Lian, Ji Liu, Ce Zhang, Yuxiong He. (2021) 1-bit Adam: Communication Efficient Large-Scale Training with Adam'sConvergenceSpeed.[arXiv:2102.02888](https://arxiv.org/abs/2102.02888).