A key reason why this model does not fit in GPU memory is that the Adam optimizer states for the model consume 18GB; a significant portion of the 32GB RAM. By using ZeRO stage 1 to partition the optimizer state among eight data parallel ranks, the per-device memory consumption can be reduced to 2.25GB, thus making the model trainable. To enable ZeRO stage 1, we simply update the DeepSpeed json config file as below:
A key reason why this model does not fit in GPU memory is that the Adam optimizer states for the model consume 18GB; a significant portion of the 32GB RAM. By using ZeRO stage 1 to partition the optimizer state among eight data parallel ranks, the per-device memory consumption can be reduced to 2.25GB, thus making the model trainable. To enable ZeRO stage 1, we simply update the DeepSpeed json config file as below:
...
@@ -45,9 +48,15 @@ A key reason why this model does not fit in GPU memory is that the Adam optimize
...
@@ -45,9 +48,15 @@ A key reason why this model does not fit in GPU memory is that the Adam optimize
```
```
As seen above, we set two fields in the **zero_optimization** key. Specifically we set the _stage_ field to 1, and the optional _reduce_bucket_size_ for gradient reduction to 500M. With ZeRO stage 1 enabled, the model can now train smoothly on 8 GPUs without running out of memory. Below we provide some screenshots of the model training:
As seen above, we set two fields in the **zero_optimization** key. Specifically we set the _stage_ field to 1, and the optional _reduce_bucket_size_ for gradient reduction to 500M. With ZeRO stage 1 enabled, the model can now train smoothly on 8 GPUs without running out of memory. Below we provide some screenshots of the model training:
From the nvidia-smi screenshot above we can see that only GPUs 6-7 are being used for training the model. With ZeRO stage 1 we can further reduce the per-device memory consumption by increasing the data parallelism degree. These memory savings can be leveraged to either increase model size and/or batch size. In contrast, such benefits are not possible with data parallelism alone.
From the nvidia-smi screenshot above we can see that only GPUs 6-7 are being used for training the model. With ZeRO stage 1 we can further reduce the per-device memory consumption by increasing the data parallelism degree. These memory savings can be leveraged to either increase model size and/or batch size. In contrast, such benefits are not possible with data parallelism alone.
...
@@ -85,10 +94,14 @@ In the above changes, we have set the _stage_ field to 2, and configured other o
...
@@ -85,10 +94,14 @@ In the above changes, we have set the _stage_ field to 2, and configured other o