Unverified Commit 01b6e27e authored by Shaden Smith's avatar Shaden Smith Committed by GitHub
Browse files

Activation checkpointing bugfix and unit tests (#420)



* Activation checkpointing bugfix and unit tests.

* Activation checkpointing bugfix and unit tests.
Co-authored-by: default avatarJeff Rasley <jerasley@microsoft.com>
parent 5bc7d4e1
...@@ -481,13 +481,16 @@ class CheckpointFunction(torch.autograd.Function): ...@@ -481,13 +481,16 @@ class CheckpointFunction(torch.autograd.Function):
if SYNCHRONIZE: if SYNCHRONIZE:
torch.cuda.synchronize() torch.cuda.synchronize()
# Tensors returned from forward() may not be differentiable, e.g., attention mask # Tensors returned from forward() may not be differentiable.
non_grad_outputs = [o for o in outputs if not o.is_floating_point()] if torch.is_tensor(outputs):
non_grad_outputs = [outputs] if not outputs.is_floating_point() else []
else:
non_grad_outputs = [o for o in outputs if not o.is_floating_point()]
ctx.mark_non_differentiable(*non_grad_outputs) ctx.mark_non_differentiable(*non_grad_outputs)
return outputs return outputs
@staticmethod @staticmethod
def backward(ctx, *args): def backward(ctx, *grads):
global timers global timers
#see_memory_usage("In backward", force=True) #see_memory_usage("In backward", force=True)
#removing pointers to the contiguous buffer memory #removing pointers to the contiguous buffer memory
...@@ -553,17 +556,15 @@ class CheckpointFunction(torch.autograd.Function): ...@@ -553,17 +556,15 @@ class CheckpointFunction(torch.autograd.Function):
if isinstance(outputs, torch.Tensor): if isinstance(outputs, torch.Tensor):
outputs = (outputs, ) outputs = (outputs, )
# Go over args and build the list of gradient tensors. This is usually just args, # Construct arguments to autograd.backward().
# but if the forward pass returns tensors that do not require_grad then we should # This is usually just outputs and grads, but forward() can return tensors that
# adjust the arguments to autograd.backward() too. This happens when forward() # are not differentiable.
# returns indices or a mask (such as an attention mask).
# We skip the first needs_input_grad because it corresponds to run_function.
output_tensors = [] output_tensors = []
grad_tensors = [] grad_tensors = []
for idx, need_grad in enumerate(ctx.needs_input_grad[1:]): for out, grad in zip(outputs, grads):
if need_grad: if out.requires_grad:
output_tensors.append(outputs[idx]) output_tensors.append(out)
grad_tensors.append(args[idx]) grad_tensors.append(grad)
torch.autograd.backward(output_tensors, grad_tensors) torch.autograd.backward(output_tensors, grad_tensors)
......
# TODO: add tests with model parallelism for activation partitioning and other features.
from copy import deepcopy
import pytest
import torch
import deepspeed
ckpt = deepspeed.checkpointing.checkpoint
from common import distributed_test
def _compute(module, *inputs, do_checkpoint=False):
inputs = deepcopy(inputs)
module = deepcopy(module)
if do_checkpoint:
outputs = ckpt(module, *inputs)
else:
outputs = module(*inputs)
if torch.is_tensor(outputs):
outputs = (outputs, )
sum(o.sum() for o in outputs if o.requires_grad).backward()
grads = [p.grad for p in module.parameters()]
input_grads = [inp.grad for inp in inputs]
return {
'outputs': outputs,
'module_grads': grads,
'input_grads': input_grads,
}
# This is distributed because checkpoint() assumes that torch.distributed is initialized.
# torch.distributed is used with activation partitioning, but not for these simple cases.
@distributed_test(world_size=1)
def _test_activation_checkpoint(module, *inputs):
# Get rid of dropouts until we fork the RNG between tests.
module.eval()
base = _compute(module, *inputs, do_checkpoint=False)
test = _compute(module, *inputs, do_checkpoint=True)
for group in base.keys():
for b, t in zip(base[group], test[group]):
# Catch grad `None`s, etc.
if not torch.is_tensor(b):
assert b == t
elif b.is_floating_point():
assert torch.allclose(b, t)
else:
assert torch.equal(b, t)
#
# Helpers
#
class MaskedLinear(torch.nn.Linear):
def forward(self, x, mask):
out = super().forward(x)
return out * mask
class MaskedLinearSeq(MaskedLinear):
"""Tests pipeline modules by also returning the mask."""
def forward(self, x, mask):
return super().forward(x, mask), mask
class MaskedLinearSeqDup(MaskedLinearSeq):
"""MaskedLinearSeq, but with more outputs than inputs and in a different order."""
def forward(self, x, mask):
dup = x.clone().detach() * 1000 * mask
x, mask = super().forward(x, mask)
return dup, x, mask
HIDDEN_DIM = 20
def _mixed_mask(size=HIDDEN_DIM):
entries = torch.randn(size)
mask = torch.where(entries > 0, torch.ones(size), torch.zeros(size))
mask = mask.bool()
return mask
def _bool_to_float(btensor, dtype=torch.float32):
"""Converts a torch.BoolTensor to an equivalent dtype. """
ones = torch.ones(size=btensor.size(), dtype=dtype)
zeros = torch.zeros(size=btensor.size(), dtype=dtype)
return torch.where(btensor, ones, zeros)
#
# Tests
#
def test_ckpt_inputs1_outputs1():
module = torch.nn.Linear(HIDDEN_DIM, HIDDEN_DIM)
inputs = torch.rand(HIDDEN_DIM)
inputs.requires_grad = True
_test_activation_checkpoint(module, inputs)
# both bool and float are important, as bool is not diffentiable
@pytest.mark.parametrize('mask',
[
_mixed_mask(),
_bool_to_float(_mixed_mask()),
])
def test_ckpt_inputs2_outputs1(mask):
module = MaskedLinear(HIDDEN_DIM, HIDDEN_DIM)
inputs = torch.rand(HIDDEN_DIM)
inputs.requires_grad = True
_test_activation_checkpoint(module, inputs, mask)
@pytest.mark.parametrize('mask',
[
_mixed_mask(),
_bool_to_float(_mixed_mask()),
])
def test_ckpt_inputs2_outputs2(mask):
module = MaskedLinearSeq(HIDDEN_DIM, HIDDEN_DIM)
inputs = torch.rand(HIDDEN_DIM)
inputs.requires_grad = True
_test_activation_checkpoint(module, inputs, mask)
@pytest.mark.parametrize('mask',
[
_mixed_mask(),
_bool_to_float(_mixed_mask()),
])
def test_ckpt_inputs2_outputs3(mask):
module = MaskedLinearSeqDup(HIDDEN_DIM, HIDDEN_DIM)
inputs = torch.rand(HIDDEN_DIM)
inputs.requires_grad = True
_test_activation_checkpoint(module, inputs, mask)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment