test_cpu_adagrad.py 4.93 KB
Newer Older
aiss's avatar
aiss committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch
import numpy as np
import pytest

import deepspeed
from deepspeed.ops.adagrad import DeepSpeedCPUAdagrad
from deepspeed.ops.op_builder import CPUAdagradBuilder

if not deepspeed.ops.__compatible_ops__[CPUAdagradBuilder.NAME]:
    pytest.skip("cpu-adagrad is not compatible")


def check_equal(first, second, atol=1e-2, verbose=False):
    x = first.detach().numpy()
    y = second.detach().numpy()
    if verbose:
        print("x = {}".format(x.flatten()))
        print("y = {}".format(y.flatten()))
        print('-' * 80)
    np.testing.assert_allclose(x, y, err_msg="param-update mismatch!", atol=atol)


@pytest.mark.parametrize('model_size',
                         [
                             (64),
                             (22),
                             (55),
                             (127),
                             (1024),
                             (1048576),
                             (30000000),
                         ]) # yapf: disable
def test_cpu_adagrad_opt(model_size):
    device = 'cpu'
    rng_state = torch.get_rng_state()
    param = torch.nn.Parameter(torch.randn(model_size, device=device))
    torch.set_rng_state(rng_state)
    param1 = torch.nn.Parameter(torch.randn(model_size, device=device))
    torch.set_rng_state(rng_state)

    optimizer = DeepSpeedCPUAdagrad([param])
    optimizer1 = torch.optim.Adagrad([param1])

    for i in range(10):
        rng_state = torch.get_rng_state()
        param.grad = torch.randn(model_size, device=device)
        torch.set_rng_state(rng_state)
        param1.grad = torch.randn(model_size, device=device)
        optimizer.step()
        optimizer1.step()

    check_equal(param, param1, atol=1e-2, verbose=True)


@pytest.mark.parametrize('model_size,vocabulary_size,dim',
                         [
                             (16 * 2, 16 * 4, 16),
                             (16 * 32, 16 * 256, 16),
                             (16 * 256, 16 * 16384, 16),
                         ]) # yapf: disable
def test_cpu_adagrad_opt_sparse_embedding(model_size, vocabulary_size, dim):
    device = 'cpu'
    rng_state = torch.get_rng_state()

    def gen_sparse_grad(vocabulary_size, dim, num_indices, dtype, device):
        i = torch.randint(vocabulary_size,
                          size=(1,
                                num_indices),
                          dtype=torch.int64,
                          device=device)
        v = torch.randn(num_indices, dim, dtype=dtype, device=device)
        t = torch.sparse_coo_tensor(i, v, (vocabulary_size, dim), device=device)
        t = t.coalesce()
        new_i = (t.indices().view(-1,
                                  1).repeat(1,
                                            dim) * dim +
                 torch.tensor(range(dim))).flatten().unsqueeze(0)
        new_v = t.values().flatten()
        new_t = torch.sparse_coo_tensor(new_i,
                                        new_v,
                                        (vocabulary_size * dim,
                                         ),
                                        device=device)
        new_t = new_t.coalesce()
        new_t.requires_grad = False
        return new_t

    voc_size = vocabulary_size
    dim = dim
    num_indices = int(model_size // dim)
    dtype = torch.float32

    param = torch.nn.Parameter(torch.randn((voc_size * dim,
                                            ),
                                           dtype=dtype,
                                           device=device),
                               requires_grad=True)
    torch.set_rng_state(rng_state)
    param1 = torch.nn.Parameter(torch.randn((voc_size * dim,
                                             ),
                                            dtype=dtype,
                                            device=device),
                                requires_grad=True)
    torch.set_rng_state(rng_state)

    optimizer = DeepSpeedCPUAdagrad([param])
    optimizer1 = torch.optim.Adagrad([param1])

    for i in range(10):
        torch.set_rng_state(rng_state)
        param.grad = gen_sparse_grad(voc_size,
                                     dim,
                                     num_indices,
                                     dtype=dtype,
                                     device=device)
        torch.set_rng_state(rng_state)
        param1.grad = gen_sparse_grad(voc_size,
                                      dim,
                                      num_indices,
                                      dtype=dtype,
                                      device=device)
        optimizer.step()
        optimizer1.step()

    check_equal(param, param1, atol=1e-2, verbose=True)


def test_cpu_adam_gpu_error():
    model_size = 64
    device = 'cuda:0'
    param = torch.nn.Parameter(torch.randn(model_size, device=device))
    optimizer = DeepSpeedCPUAdagrad([param])

    param.grad = torch.randn(model_size, device=device)
    with pytest.raises(AssertionError):
        optimizer.step()