all_to_all.py 4.96 KB
Newer Older
aiss's avatar
aiss committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
'''Copyright The Microsoft DeepSpeed Team'''

from benchmarks.communication.utils import *
from benchmarks.communication.constants import *
from deepspeed.accelerator import get_accelerator

import time


def timed_all_to_all(input, output, args):
    if args.dist == 'torch':
        import torch.distributed as dist
    elif args.dist == 'deepspeed':
        import deepspeed.comm as dist

    sync_all()
    # Warmups, establish connections, etc.
    for i in range(args.warmups):
        dist.all_to_all_single(output, input, async_op=args.async_op)
    sync_all()

    # time the actual comm op trials times and average it
    pre = time.perf_counter()
    for i in range(args.trials):
        dist.all_to_all_single(output, input, async_op=args.async_op)
    sync_all()
    duration = time.perf_counter() - pre

    # maintain and clean performance data
    avg_duration = duration / args.trials
    size = input.element_size() * input.nelement()
    n = dist.get_world_size()
    tput, busbw = get_bw('all_to_all', size, avg_duration, args)
    tput_str, busbw_str, duration_str = get_metric_strings(args, tput, busbw, avg_duration)
    desc = f'{input.nelement()}x{input.element_size()}'

    if not args.raw:
        size = convert_size(size)

    print_rank_0(
        f"{size:<20} {desc:25s} {duration_str:20s} {tput_str:20s} {busbw_str:20s}")


def run_all_to_all(local_rank, args):
    if args.dist == 'torch':
        import torch.distributed as dist
    elif args.dist == 'deepspeed':
        import deepspeed.comm as dist

    world_size = dist.get_world_size()
    global_rank = dist.get_rank()
    # Prepare benchmark header
    print_header(args, 'all_to_all')

    if args.scan:
        M_LIST = []
        for x in (2**p for p in range(1, args.maxsize)):
            M_LIST.append(x)

        sync_all()
        # loop over various tensor sizes
        for M in M_LIST:
            global_rank = dist.get_rank()
            try:
                mat = torch.ones(world_size,
                                 M,
                                 dtype=getattr(
                                     torch,
                                     args.dtype)).to(
                                         get_accelerator().device_name(local_rank))
                assert mat.numel() % world_size == 0, f"tensor cannot be divided in {world_size} chunks"
                sync_all()
                input = ((mat.mul_(float(global_rank))).view(-1))
                output = (mat.clone().view(-1))
            except RuntimeError as e:
                if 'out of memory' in str(e):
                    if dist.get_rank() == 0:
                        print('WARNING: Ran out of GPU memory. Exiting comm op.')
                    sync_all()
                    break
            sync_all()
            timed_all_to_all(input, output, args)
    else:
        # Send the biggest message size our GPUs can fit. If you're facing OOM errors, reduce the mem_factor
        elements_per_gpu = max_numel(comm_op='all_to_all',
                                     dtype=getattr(torch,
                                                   args.dtype),
                                     mem_factor=args.mem_factor,
                                     local_rank=local_rank,
                                     args=args)
        try:
            mat = torch.ones(elements_per_gpu,
                             dtype=getattr(torch,
                                           args.dtype)).to(
                                               get_accelerator().device_name(local_rank))
            assert mat.numel() % world_size == 0, f"tensor with {mat.numel()} elements cannot be divided in {world_size} chunks"
            input = ((mat.mul_(float(global_rank))).view(-1))
            # Delete original mat to avoid OOM
            del mat
            get_accelerator().empty_cache()
            output = torch.zeros(
                elements_per_gpu,
                dtype=getattr(torch,
                              args.dtype)).to(get_accelerator().device_name(local_rank))
        except RuntimeError as e:
            if 'out of memory' in str(e):
                if dist.get_rank() == 0:
                    print(
                        'WARNING: Ran out of GPU memory. Try to reduce the --mem-factor argument!'
                    )
                sync_all()
                return
        sync_all()

        if args.debug:
            for i in range(world_size):
                if i == global_rank:
                    print(f"Before AllToAll Input List at rank {global_rank}: {input}")
                dist.barrier()

        timed_all_to_all(input, output, args)

        if args.debug:
            for i in range(world_size):
                if i == global_rank:
                    print(f"AllToAll Results at rank {global_rank}: {output}")
                dist.barrier()


if __name__ == "__main__":
    args = benchmark_parser().parse_args()
    rank = args.local_rank
    init_processes(local_rank=rank, args=args)
    run_all_to_all(local_rank=rank, args=args)