all_gather.py 6.27 KB
Newer Older
aiss's avatar
aiss committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
'''Copyright The Microsoft DeepSpeed Team'''

from benchmarks.communication.utils import *
from benchmarks.communication.constants import *
from deepspeed.accelerator import get_accelerator

import time


# Run all_gather and print metrics
def timed_all_gather(input, output, args):
    if args.dist == 'torch':
        import torch.distributed as dist
    elif args.dist == 'deepspeed':
        import deepspeed.comm as dist

    sync_all()
    # Warmups, establish connections, etc.
    for i in range(args.warmups):
        # use all_gather_base if available
        if args.dist == 'torch':
            if hasattr(torch.distributed, "_all_gather_base"):
                dist._all_gather_base(output, input, group=None, async_op=args.async_op)
            else:
                output_tensors = list(
                    torch.chunk(output_tensor,
                                cdb.get_world_size(group)))
                dist.all_gather(output_tensors, input_tensor, group=group, async_op=True)
        elif args.dist == 'deepspeed':
            dist.allgather_fn(output, input, group=None, async_op=args.async_op)
    sync_all()

    # time the actual comm op trials times and average it
    pre = time.perf_counter()
    for i in range(args.trials):
        # use all_gather_base if available
        if args.dist == 'torch':
            if hasattr(torch.distributed, "_all_gather_base"):
                dist._all_gather_base(output, input, group=None, async_op=args.async_op)
            else:
                output_tensors = list(
                    torch.chunk(output_tensor,
                                cdb.get_world_size(group)))
                dist.all_gather(output_tensors, input_tensor, group=group, async_op=True)
        elif args.dist == 'deepspeed':
            dist.allgather_fn(output, input, group=None, async_op=args.async_op)
    sync_all()
    duration = time.perf_counter() - pre

    # maintain and clean performance data
    avg_duration = duration / args.trials
    size = input.element_size() * input.nelement()
    n = dist.get_world_size()
    tput, busbw = get_bw('all_gather', size, avg_duration, args)
    tput_str, busbw_str, duration_str = get_metric_strings(args, tput, busbw, avg_duration)
    desc = f'{input.nelement()}x{input.element_size()}'

    if not args.raw:
        size = convert_size(size)

    print_rank_0(
        f"{size:<20} {desc:25s} {duration_str:20s} {tput_str:20s} {busbw_str:20s}")


def run_all_gather(local_rank, args):
    if args.dist == 'torch':
        import torch.distributed as dist
    elif args.dist == 'deepspeed':
        import deepspeed.comm as dist

    # Prepare benchmark header
    print_header(args, 'all_gather')
    global_rank = dist.get_rank()
    world_size = dist.get_world_size()

    if args.scan:
        # Create list of message sizes
        M_LIST = []
        for x in (2**p for p in range(1, args.maxsize)):
            M_LIST.append(x)

        sync_all()
        # loop over various tensor sizes
        for M in M_LIST:
            global_rank = dist.get_rank()
            try:
                mat = torch.ones(world_size,
                                 M,
                                 dtype=getattr(
                                     torch,
                                     args.dtype)).to(
                                         get_accelerator().device_name(local_rank))
                sync_all()
                input = ((mat.mul_(float(global_rank))).view(-1))
                # Delete original mat to avoid OOM
                del mat
                get_accelerator().empty_cache()
                output = torch.zeros(input.nelement() * world_size,
                                     dtype=getattr(
                                         torch,
                                         args.dtype)).to(
                                             get_accelerator().device_name(local_rank))
            except RuntimeError as e:
                if 'out of memory' in str(e):
                    if dist.get_rank() == 0:
                        print('WARNING: Ran out of GPU memory. Exiting comm op.')
                    sync_all()
                    break
            sync_all()
            timed_all_gather(input, output, args)
    else:
        # all_gather_base saves memory
        if (args.dist == 'torch'
                and hasattr(torch.distributed,
                            "_all_gather_base")) or (args.dist == 'deepspeed'
                                                     and dist.has_allgather_base):
            mem_factor = args.mem_factor + 0.2
        else:
            mem_factor = args.mem_factor
        # Send the biggest message size our GPUs can fit. If you're facing OOM errors, reduce the mem_factor
        sync_all()
        elements_per_gpu = max_numel(comm_op='all_gather',
                                     dtype=getattr(torch,
                                                   args.dtype),
                                     mem_factor=mem_factor,
                                     local_rank=local_rank,
                                     args=args)
        try:
            mat = torch.ones(elements_per_gpu,
                             dtype=getattr(torch,
                                           args.dtype)).to(
                                               get_accelerator().device_name(local_rank))
            # multiply each GPU's tensor by the rank to ease debugging
            input = ((mat.mul_(float(global_rank))).view(-1))
            # Delete original mat to avoid OOM
            del mat
            get_accelerator().empty_cache()
            output = torch.zeros(
                elements_per_gpu * world_size,
                dtype=getattr(torch,
                              args.dtype)).to(get_accelerator().device_name(local_rank))
        except RuntimeError as e:
            if 'out of memory' in str(e):
                if dist.get_rank() == 0:
                    print(
                        'WARNING: Ran out of GPU memory. Try to reduce the --mem-factor argument!'
                    )
                sync_all()
                return

        sync_all()
        timed_all_gather(input, output, args)


if __name__ == "__main__":
    args = benchmark_parser().parse_args()
    rank = args.local_rank
    init_processes(local_rank=rank, args=args)
    run_all_gather(local_rank=rank, args=args)