run_func_test.py 6.53 KB
Newer Older
Elton Zheng's avatar
Elton Zheng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# coding=utf-8
# Copyright (c) 2019, The Microsoft DeepSpeed Team. All rights reserved.
#
# Note: please copy webtext data to "Megatron-LM" folder, before running this script.

import unittest
import subprocess
import os
import time
import re
from .test_common import BaseTestCase


def grep_loss_from_file(file_name):
    loss = 0.0

    with open(file_name, 'r') as f:
        lines = f.readlines()
        line_filter = "validation loss at the end of training for test data | LM loss:"
        match_number = re.compile('LM loss: ([-+]?[0-9]+\.?[0-9]*(?:[Ee][-+]?[0-9]+)?)')

        for line in lines:
            if line_filter in line:
                loss = re.findall(match_number, line)
                loss = float(loss[0])

    if loss == 0.0:
        print("no loss found in file ", file_name)

    return loss


class GPT2FuncTestCase(BaseTestCase):
    def __init__(self, methodName="DeepSpeed function test on GPT2 model"):
        super(GPT2FuncTestCase, self).__init__(methodName)

    def setUp(self):
        self.save_dir = os.getcwd()
        new_dir = os.path.dirname(__file__)
        if new_dir:
            os.chdir(new_dir)

    def tearDown(self):
        os.chdir(self.save_dir)

    def test_mp1_gpu1_node1(self):
        test_config = {
            "mp": 1,
            "gpus": 1,
            "nodes": 1,
            "bs": 4,
            "steps": 1000,
            "layers": 12,
            "hidden_size": 768,
            "seq_length": 256,
            "heads": 12,
            "deepspeed": False,
            "json": "ds_config_func_bs4.json",
        }

        succ = self.run_test(test_config, 0.01)
        self.assertTrue(succ)

    def test_mp1_gpu2_node1(self):
        test_config = {
            "mp": 1,
            "gpus": 2,
            "nodes": 1,
            "bs": 8,
            "steps": 1000,
            "layers": 12,
            "hidden_size": 768,
            "seq_length": 256,
            "heads": 12,
            "deepspeed": False,
            "json": "ds_config_func_bs8.json",
        }

        succ = self.run_test(test_config, 0.01)
        self.assertTrue(succ)

    def test_mp2_gpu4_node1(self):
        test_config = {
            "mp": 2,
            "gpus": 4,
            "nodes": 1,
            "bs": 8,
            "steps": 1000,
            "layers": 12,
            "hidden_size": 768,
            "seq_length": 256,
            "heads": 12,
            "deepspeed": False,
            "json": "ds_config_func_bs8.json",
        }

        succ = self.run_test(test_config, 0.01)
        self.assertTrue(succ)

        succ = self.run_partition_activations_test(test_config, 0.01)
        self.assertTrue(succ)

    def test_mp4_gpu4_node1(self):
        test_config = {
            "mp": 4,
            "gpus": 4,
            "nodes": 1,
            "bs": 8,
            "steps": 1000,
            "layers": 12,
            "hidden_size": 768,
            "seq_length": 256,
            "heads": 12,
            "deepspeed": False,
            "json": "ds_config_func_bs8.json",
        }

        succ = self.run_test(test_config, 0.01)
        self.assertTrue(succ)

        succ = self.run_partition_activations_test(test_config, 0.01)
        self.assertTrue(succ)

    def test_optimizer_scheduler(self):
        test_config = {
            "mp": 1,
            "gpus": 1,
            "nodes": 1,
            "bs": 4,
            "steps": 20,
            "layers": 12,
            "hidden_size": 768,
            "seq_length": 256,
            "heads": 12,
            "deepspeed": False,
            "json": "ds_config_func_scheduler.json",
        }

        succ = self.run_test(test_config, 0.01)
        # assure no crash.
        self.assertTrue(True)

    def run_partition_activations_test(self, test_config, r_tol):
        print("\n")
        print("{0}: starting......".format(self.id()))

        prefix = "gpt2_partition_activation_"

        # baseline run...
        test_config["deepspeed"] = False
        base_file = self.gen_output_name(test_config, prefix)

        # skip baseline run if it exists.
        if not self.has_loss_data(base_file):
            print("{0}: baseline run.".format(self.id()))
            self.run_gpt2_test(test_config, base_file)
        else:
            print("{0}: baseline exists.".format(self.id()))

        # DeepSpeed run...
        test_config["deepspeed"] = True
        test_config["other_args"] = "--partition-activations"
        print("{0}: DeepSpeed run.".format(self.id()))
        test_file = self.gen_output_name(test_config, prefix)
        self.run_gpt2_test(test_config, test_file)

        return self.check_parity(base_file, test_file, r_tol)

    def run_test(self, test_config, r_tol):
        print("\n")
        print("{0}: starting......".format(self.id()))

        prefix = "gpt2_func"

        # baseline run...
        test_config["deepspeed"] = False
        base_file = self.gen_output_name(test_config, prefix)

        # skip baseline run if it exists.
        if not self.has_loss_data(base_file):
            print("{0}: baseline run.".format(self.id()))
            self.run_gpt2_test(test_config, base_file)
        else:
            print("{0}: baseline exists.".format(self.id()))

        # DeepSpeed run...
        test_config["deepspeed"] = True
        print("{0}: DeepSpeed run.".format(self.id()))
        test_file = self.gen_output_name(test_config, prefix)
        self.run_gpt2_test(test_config, test_file)

        return self.check_parity(base_file, test_file, r_tol)

    def has_loss_data(self, file_name):
        has_loss = False
        if os.path.exists(file_name):
            loss = grep_loss_from_file(file_name)
            if loss != 0.0:
                has_loss = True

        return has_loss

    def check_parity(self, base_file, test_file, r_tol):
        base_loss = grep_loss_from_file(base_file)
        test_loss = grep_loss_from_file(test_file)

        print("baseline loss: {0}, test loss: {1}".format(base_loss, test_loss))

        if base_loss == 0.0 or test_loss == 0.0:
            return False

        if abs((base_loss - test_loss) / base_loss) > r_tol:
            return False

        return True


def suite():
    suite = unittest.TestSuite()
    suite.addTest(GPT2FuncTestCase('test_mp1_gpu1_node1'))
    suite.addTest(GPT2FuncTestCase('test_mp1_gpu2_node1'))
    suite.addTest(GPT2FuncTestCase('test_mp2_gpu4_node1'))
    suite.addTest(GPT2FuncTestCase('test_mp4_gpu4_node1'))
    suite.addTest(GPT2FuncTestCase('test_optimizer_scheduler'))
    return suite


if __name__ == '__main__':
    runner = unittest.TextTestRunner(failfast=True)
    runner.run(suite())