test_zero_context.py 9.7 KB
Newer Older
aiss's avatar
aiss committed
1
2
3
4
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team
aiss's avatar
aiss committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

from types import SimpleNamespace

import torch
import deepspeed
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus, partitioned_param_data_shape
import deepspeed.comm as dist

from unit.common import DistributedTest
from unit.simple_model import SimpleModel
from utils import setup_serial_env


# Test that no sub-class or super-class is missed
class ConvX(torch.nn.Conv1d):
aiss's avatar
aiss committed
20

aiss's avatar
aiss committed
21
22
23
24
25
26
27
28
29
30
    def __init__(self, *args):
        super().__init__(*args)
        # This would not be partitioned before bugfix 5ca8167
        self.param_in = torch.nn.Parameter(torch.FloatTensor(5).uniform_())

    def forward(self, x):
        return x


class ConvNet(torch.nn.Module):
aiss's avatar
aiss committed
31

aiss's avatar
aiss committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    def __init__(self):
        super().__init__()
        self.conv1 = ConvX(1, 3, 4)
        self.param = torch.nn.Parameter(torch.FloatTensor(5).uniform_())

    def forward(self, x):
        return x


config = {
    "train_batch_size": 1,
    "steps_per_print": 1,
    "optimizer": {
        "type": "Adam",
        "params": {
            "lr": 0.00015
        }
    },
    "fp16": {
        "enabled": True,
        "loss_scale": 138.
    },
    "zero_optimization": {
        "stage": 3,
        "stage3_param_persistence_threshold": 1,
    }
}


class TestZeroGatheredParametersFree(DistributedTest):
    world_size = 1

    def test(self):
        config_dict = {"train_batch_size": 1, "zero_optimization": {"stage": 3}}
        hidden_dim = 10

        class MyModel(torch.nn.Module):
aiss's avatar
aiss committed
69

aiss's avatar
aiss committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
            def __init__(self, hidden_dim):
                super(MyModel, self).__init__()
                self.l1 = torch.nn.Linear(hidden_dim, hidden_dim)

        with deepspeed.zero.Init(config_dict_or_path=config_dict):
            model = MyModel(hidden_dim)

        with deepspeed.zero.GatheredParameters(list(model.parameters())):
            assert model.l1.weight.numel() != 0, "GatheredParameters should give a non-0-sized tensor"

        # on exit from `GatheredParameters` the gathered params should be freed and not leak memory
        assert model.l1.weight.numel() == 0, "outside of GatheredParameters the param should go back to be 0-sized"


class TestSerialContext(DistributedTest):
    world_size = 1
    init_distributed = False
    set_dist_env = False

    def test_subclass_param(self):
        setup_serial_env()
        with deepspeed.zero.Init(config=config):
            model = ConvNet()

        assert model.param.ds_status == ZeroParamStatus.NOT_AVAILABLE
        assert model.conv1.param_in.ds_status == ZeroParamStatus.NOT_AVAILABLE

    def test_scattered_init_dist(self):
        setup_serial_env()
        assert not dist.is_initialized()
        with deepspeed.zero.Init():
            assert dist.is_initialized()

    def test_scatter_halftype(self):
        setup_serial_env()

        with deepspeed.zero.Init():
            l = torch.nn.Linear(10, 10)
            assert l.weight.ds_tensor.dtype == torch.float16

            y = torch.LongTensor([3, 3])
            assert y.dtype == torch.long

    def test_throughput_calculation(self):
        setup_serial_env()

        train_micro_batch_size_per_gpu = 7
        gradient_accumulation_steps = 6
        config_dict = {
            "train_micro_batch_size_per_gpu": train_micro_batch_size_per_gpu,
            "gradient_accumulation_steps": gradient_accumulation_steps,
            "optimizer": {
                "type": "Adam",
                "params": {
                    "lr": 0.001,
                }
            },
            "zero_optimization": {
                "stage": 0
            },
        }

        args = SimpleNamespace(local_rank=0)
        net = SimpleModel(hidden_dim=4)
        engine, _, _, _ = deepspeed.initialize(args=args,
aiss's avatar
aiss committed
135
136
137
                                               config=config_dict,
                                               model=net,
                                               model_parameters=net.parameters())
aiss's avatar
aiss committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
        assert engine.tput_timer.batch_size == train_micro_batch_size_per_gpu * gradient_accumulation_steps

        assert not engine.tput_timer.initialized
        assert not engine.tput_timer.started
        assert engine.tput_timer.start_step == 2
        assert engine.tput_timer.start_time == 0
        assert engine.tput_timer.micro_step_count == 0
        assert engine.tput_timer.global_step_count == 0
        assert engine.tput_timer.total_elapsed_time == 0

        # calling stop() while uninitialized - has no effect
        engine.tput_timer.stop()
        assert not engine.tput_timer.initialized
        assert not engine.tput_timer.started
        assert engine.tput_timer.start_time == 0
        assert engine.tput_timer.micro_step_count == 0
        assert engine.tput_timer.global_step_count == 0
        assert engine.tput_timer.total_elapsed_time == 0

        # any call to start() (from dataloader or not) initializes the timer
        engine.tput_timer.start()
        assert engine.tput_timer.initialized
        assert engine.tput_timer.started
        assert engine.tput_timer.start_time == 0
        assert engine.tput_timer.micro_step_count == 0
        assert engine.tput_timer.global_step_count == 0
        assert engine.tput_timer.total_elapsed_time == 0

        # calling stop() after initialized - increments the local micro step counter
        engine.tput_timer.stop()
        assert engine.tput_timer.initialized
        assert not engine.tput_timer.started
        assert engine.tput_timer.start_time == 0
        assert engine.tput_timer.micro_step_count == 1
        assert engine.tput_timer.global_step_count == 0
        assert engine.tput_timer.total_elapsed_time == 0

        # calling start()/stop() to increment the step counter until start_step
aiss's avatar
aiss committed
176
        while engine.tput_timer.micro_step_count < (gradient_accumulation_steps * engine.tput_timer.start_step):
aiss's avatar
aiss committed
177
            engine.tput_timer.start()
aiss's avatar
aiss committed
178
            global_step = (engine.tput_timer.micro_step_count + 1) % gradient_accumulation_steps == 0
aiss's avatar
aiss committed
179
180
181
182
183
184
185
186
187
188
            engine.tput_timer.stop(global_step=global_step)
        assert engine.tput_timer.global_step_count == engine.tput_timer.start_step
        assert engine.tput_timer.total_elapsed_time == 0

        # calling start()/stop() accumulates duration during gradient accumulation
        while engine.tput_timer.global_step_count == engine.tput_timer.start_step:
            engine.tput_timer.start()
            current_duration = engine.tput_timer.step_elapsed_time
            total_duration = engine.tput_timer.total_elapsed_time

aiss's avatar
aiss committed
189
            global_step = (engine.tput_timer.micro_step_count + 1) % gradient_accumulation_steps == 0
aiss's avatar
aiss committed
190
191
192
193
            engine.tput_timer.stop(global_step=global_step)
            duration = engine.tput_timer.end_time - engine.tput_timer.start_time
            # step elapsed time is reset after gradient accumulation steps
            assert engine.tput_timer.step_elapsed_time == (
aiss's avatar
aiss committed
194
195
                0 if engine.tput_timer.global_step_count != engine.tput_timer.start_step else current_duration +
                duration)
aiss's avatar
aiss committed
196
197
198
199
200
201
            assert engine.tput_timer.total_elapsed_time == total_duration + duration

    def test_ext_param_getattr(self):
        setup_serial_env()

        class ExtLinear(torch.nn.Module):
aiss's avatar
aiss committed
202

aiss's avatar
aiss committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
            def __init__(self, dim=16):
                super().__init__()
                self.dim = dim
                self.linear1 = torch.nn.Linear(dim, dim)
                self.linear2 = torch.nn.Linear(dim, dim)

            def forward(self, input):
                A = self.linear1(input)
                B = self.linear2(A)

                # external use of self.linear1.weight
                C = torch.nn.functional.linear(B, self.linear1.weight)
                return C.sum()

        net = ExtLinear()

        args = SimpleNamespace(local_rank=0)
        engine, optim, _, _ = deepspeed.initialize(args=args,
aiss's avatar
aiss committed
221
222
223
                                                   model=net,
                                                   model_parameters=net.parameters(),
                                                   config=config)
aiss's avatar
aiss committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

        with deepspeed.zero.GatheredParameters(net.linear1.weight):
            assert net.linear1.weight.numel() == net.dim**2

        input = torch.rand(net.dim).to(engine.device).half()
        loss = engine(input)
        engine.backward(loss)
        engine.step()


class TestScatterGather(DistributedTest):
    world_size = 2

    def test(self):
        with deepspeed.zero.Init():
            l = torch.nn.Linear(6, 3)
        assert l.weight.ds_status == ZeroParamStatus.NOT_AVAILABLE
        assert l.weight.shape == torch.Size(partitioned_param_data_shape)

        # Ensure there is no impact outside the context
        l2 = torch.nn.Linear(6, 3)
        assert not hasattr(l2.weight, 'ds_status')
        assert l2.weight.numel() == l2.in_features * l2.out_features

        with deepspeed.zero.GatheredParameters(l.weight):
            assert l.weight.ds_status == ZeroParamStatus.AVAILABLE
            assert l.weight.numel() == l.in_features * l.out_features


class TestGatherUpdate(DistributedTest):
    world_size = 2

    def test(self):
        with deepspeed.zero.Init():
            l = torch.nn.Linear(4, 2)
        assert l.weight.ds_status == ZeroParamStatus.NOT_AVAILABLE

        # Gather and make a change
        with deepspeed.zero.GatheredParameters(l.weight, modifier_rank=1):
            assert l.weight.ds_status == ZeroParamStatus.AVAILABLE
            if dist.get_rank() == 1:
                with torch.no_grad():
                    l.weight.zero_()

        # should now be scattered again

        # Now gather again and ensure the change is global
        with deepspeed.zero.GatheredParameters(l.weight):
            # all ranks compare
            assert torch.equal(l.weight, torch.zeros_like(l.weight))