test_data_efficiency.py 7.7 KB
Newer Older
aiss's avatar
aiss committed
1
2
3
4
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team
aiss's avatar
aiss committed
5
6
7
8
9
10
11
12
13
14

import torch
import os
import deepspeed
from deepspeed.accelerator import get_accelerator
from unit.common import DistributedTest
from unit.simple_model import Curriculum_SimpleModel, SimpleModel, random_dataloader, random_dataset


class MPU():
aiss's avatar
aiss committed
15

aiss's avatar
aiss committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    def __init__(self, tp_world_size):
        self.rank = deepspeed.comm.get_rank()
        self.world_size = deepspeed.comm.get_world_size()
        self.tp_world_size = tp_world_size

        for i in range(0, self.world_size, tp_world_size):
            ranks = range(i, i + tp_world_size)
            group = deepspeed.comm.new_group(ranks)
            if self.rank in ranks:
                self.tp_group = group

        for i in range(0, tp_world_size):
            ranks = range(i, self.world_size, tp_world_size)
            group = deepspeed.comm.new_group(ranks)
            if self.rank in ranks:
                self.dp_group = group

    def get_model_parallel_rank(self):
        return self.rank % self.tp_world_size

    def get_model_parallel_world_size(self):
        return self.tp_world_size

    def get_data_parallel_rank(self):
        return self.rank // self.tp_world_size

    def get_data_parallel_world_size(self):
        return self.world_size // self.tp_world_size

    def get_data_parallel_group(self):
        return self.dp_group

    def get_model_parallel_group(self):
        return self.tp_group


class TestDataEfficiency(DistributedTest):
    world_size = 2

    def test_curriculum_learning(self):
        config_dict = {
            "train_batch_size": 2,
            "steps_per_print": 1,
            "optimizer": {
                "type": "Adam",
                "params": {
                    "lr": 0.00015,
                    "weight_decay": 0.01
                }
            },
            "gradient_clipping": 1.0,
            "fp16": {
                "enabled": True,
                "loss_scale": 0,
                "initial_scale_power": 16
            },
            "data_efficiency": {
                "enabled": True,
                "seed": 1234,
                "data_sampling": {
                    "enabled": True,
                    "num_workers": 0,
                    "curriculum_learning": {
                        "enabled": True,
                        "data_cluster_path": "/tmp",
                        "curriculum_metrics": {
                            "dummy_metric": {
                                "index_to_sample_path": "dummy",
                                "index_to_metric_path": "dummy",
                                "difficulty_type": "value",
                                "clustering_type": "single_cluster",
                                "min_difficulty": 2,
                                "max_difficulty": 10,
                                "schedule_type": "fixed_root",
                                "schedule_config": {
                                    "total_curriculum_step": 8,
                                    "difficulty_step": 2,
                                    "root_degree": 1
                                }
                            }
                        }
                    }
                }
            }
        }

        def data_post_process(data, data_sampler_state_dict):
            assert 'dummy_metric' in data_sampler_state_dict['current_difficulties']
            return data

        hidden_dim = 10
        model = SimpleModel(hidden_dim)
        dataset = random_dataset(20, hidden_dim, torch.device('cpu'), dtype=torch.half)
        model, _, data_loader, _ = deepspeed.initialize(config=config_dict,
aiss's avatar
aiss committed
110
111
112
113
                                                        model=model,
                                                        training_data=dataset,
                                                        model_parameters=model.parameters(),
                                                        mpu=MPU(1))
aiss's avatar
aiss committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
        if model.mpu.get_data_parallel_rank() == 0 and not os.path.exists('/tmp'):
            os.makedirs('/tmp')
        model.set_data_post_process_func(data_post_process)
        for n, batch in enumerate(data_loader):
            x = batch[0].to(get_accelerator().current_device_name())
            y = batch[1].to(get_accelerator().current_device_name())
            loss = model(x, y)
            model.backward(loss)
            model.step()
            if n >= 10:
                break


class TestLegacyCurriculumScheduler(DistributedTest):
    world_size = 2

    def test_fixed_discrete(self):
        config_dict = {
            "train_batch_size": 2,
            "steps_per_print": 1,
            "optimizer": {
                "type": "Adam",
                "params": {
                    "lr": 0.00015,
                    "weight_decay": 0.01
                }
            },
            "gradient_clipping": 1.0,
            "fp16": {
                "enabled": True,
                "loss_scale": 0,
                "initial_scale_power": 16
            },
            "curriculum_learning": {
                "enabled": True,
                "curriculum_type": "seqlen",
                "min_difficulty": 1,
                "max_difficulty": 5,
                "schedule_type": "fixed_discrete",
                "schedule_config": {
aiss's avatar
aiss committed
154
155
                    "difficulty": [1, 2, 3, 4, 5],
                    "max_step": [2, 4, 6, 8]
aiss's avatar
aiss committed
156
157
158
159
160
161
162
                }
            }
        }
        hidden_dim = 10
        ground_truths = {1: 1, 2: 1, 3: 2, 4: 2, 5: 3, 6: 3, 7: 4, 8: 4}

        model = Curriculum_SimpleModel(hidden_dim)
aiss's avatar
aiss committed
163
164
        model, _, _, _ = deepspeed.initialize(config=config_dict, model=model, model_parameters=model.parameters())
        data_loader = random_dataloader(model=model, total_samples=20, hidden_dim=hidden_dim, device=model.device)
aiss's avatar
aiss committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        for n, batch in enumerate(data_loader):
            loss, seqlen = model(batch[0], batch[1])
            model.backward(loss)
            model.step()
            true_seqlen = 5
            if n + 1 in ground_truths:
                true_seqlen = ground_truths[n + 1]
            assert seqlen == true_seqlen, f"Incorrect curriculum schedule"

    def test_fixed_linear(self):
        config_dict = {
            "train_batch_size": 2,
            "steps_per_print": 1,
            "optimizer": {
                "type": "Adam",
                "params": {
                    "lr": 0.00015,
                    "weight_decay": 0.01
                }
            },
            "gradient_clipping": 1.0,
            "fp16": {
                "enabled": True,
                "loss_scale": 0,
                "initial_scale_power": 16
            },
            "curriculum_learning": {
                "enabled": True,
                "curriculum_type": "seqlen",
                "min_difficulty": 2,
                "max_difficulty": 10,
                "schedule_type": "fixed_linear",
                "schedule_config": {
                    "total_curriculum_step": 8,
                    "difficulty_step": 2
                }
            }
        }
        hidden_dim = 10
        ground_truths = {1: 2, 2: 4, 3: 4, 4: 6, 5: 6, 6: 8, 7: 8, 8: 10, 9: 10, 10: 10}

        model = Curriculum_SimpleModel(hidden_dim)
aiss's avatar
aiss committed
207
208
        model, _, _, _ = deepspeed.initialize(config=config_dict, model=model, model_parameters=model.parameters())
        data_loader = random_dataloader(model=model, total_samples=20, hidden_dim=hidden_dim, device=model.device)
aiss's avatar
aiss committed
209
210
211
212
213
214
215
        for n, batch in enumerate(data_loader):
            loss, seqlen = model(batch[0], batch[1])
            model.backward(loss)
            model.step()
            if n + 1 in ground_truths:
                true_seqlen = ground_truths[n + 1]
                assert seqlen == true_seqlen, f"Incorrect curriculum schedule"