test_topology.py 8.06 KB
Newer Older
aiss's avatar
aiss committed
1
2
3
4
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team
aiss's avatar
aiss committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

import pytest

import torch
import deepspeed.comm as dist

from deepspeed.runtime.pipe.topology import PipelineParallelGrid as Grid
from deepspeed.runtime.pipe.topology import ProcessTopology as Topo
from deepspeed.runtime.pipe.topology import _prime_factors

from deepspeed.accelerator import get_accelerator
from unit.common import DistributedTest


def test_topology_2d():
    topo = Topo(axes=['row', 'col'], dims=[2, 2])

    assert topo.world_size() == 4

    assert topo.get_rank(row=0, col=0) == 0
    assert topo.get_rank(row=0, col=1) == 1
    assert topo.get_rank(row=1, col=0) == 2
    assert topo.get_rank(row=1, col=1) == 3

    assert topo.get_axis_list(axis='row', idx=0) == [0, 1]
    assert topo.get_axis_list(axis='row', idx=1) == [2, 3]
    assert topo.get_axis_list(axis='col', idx=0) == [0, 2]
    assert topo.get_axis_list(axis='col', idx=1) == [1, 3]


def test_topology_dims():
    topo = Topo(axes=['a', 'b', 'c'], dims=[2, 3, 4])
    assert topo.world_size() == 24
    assert topo.get_dim('a') == 2
    assert topo.get_dim('b') == 3
    assert topo.get_dim('c') == 4


def test_topology_match():
    topo = Topo(axes=['pipe', 'data', 'model'], dims=[2, 2, 2])
    print(topo.filter_match(pipe=0, data=1))
    assert topo.filter_match(pipe=0, data=1) == [2, 3]
    print([topo.get_coord(r) for r in topo.filter_match(pipe=0, data=1)])


def test_topology_rank_repr():
    topo = Topo(axes=['a', 'b'], dims=[2, 2])
    assert topo.get_rank_repr(rank=0) == 'a_00-b_00'
    assert topo.get_rank_repr(rank=1) == 'a_00-b_01'
    assert topo.get_rank_repr(rank=2) == 'a_01-b_00'
    assert topo.get_rank_repr(rank=3) == 'a_01-b_01'

    assert topo.get_rank_repr(rank=3, inner_sep='+') == 'a+01-b+01'
aiss's avatar
aiss committed
58
    assert topo.get_rank_repr(rank=3, inner_sep='🤗', outer_sep='_JEFF_') == 'a🤗01_JEFF_b🤗01'
aiss's avatar
aiss committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

    topo = Topo(axes=['pipe', 'data'], dims=[2, 2])
    assert topo.get_rank_repr(rank=0) == ''
    assert topo.get_rank_repr(rank=1) == ''
    assert topo.get_rank_repr(rank=2) == ''
    assert topo.get_rank_repr(rank=3) == ''

    assert topo.get_rank_repr(rank=0, omit_axes=['pipe']) == 'data_00'
    assert topo.get_rank_repr(rank=1, omit_axes=['pipe']) == 'data_01'
    assert topo.get_rank_repr(rank=2, omit_axes=['pipe']) == 'data_00'
    assert topo.get_rank_repr(rank=3, omit_axes=['pipe']) == 'data_01'

    assert topo.get_rank_repr(rank=0, omit_axes=[]) == 'pipe_00-data_00'
    assert topo.get_rank_repr(rank=1, omit_axes=[]) == 'pipe_00-data_01'
    assert topo.get_rank_repr(rank=2, omit_axes=[]) == 'pipe_01-data_00'
    assert topo.get_rank_repr(rank=3, omit_axes=[]) == 'pipe_01-data_01'

    topo = Topo(axes=['pipe', 'data', 'model'], dims=[2, 2, 2])
    assert topo.get_rank_repr(rank=0) == 'model_00'
    assert topo.get_rank_repr(rank=1) == 'model_01'
    assert topo.get_rank_repr(rank=2) == 'model_00'
    assert topo.get_rank_repr(rank=3) == 'model_01'
    assert topo.get_rank_repr(rank=4) == 'model_00'
    assert topo.get_rank_repr(rank=5) == 'model_01'
    assert topo.get_rank_repr(rank=6) == 'model_00'
    assert topo.get_rank_repr(rank=7) == 'model_01'


def test_topology_3d():
    topo = Topo(axes=['a', 'b', 'c'], dims=[2, 2, 2])

    assert topo.get_rank(a=0, b=0, c=0) == 0
    assert topo.get_rank(a=0, b=0, c=1) == 1
    assert topo.get_rank(a=0, b=1, c=0) == 2
    assert topo.get_rank(a=0, b=1, c=1) == 3
    assert topo.get_rank(a=1, b=0, c=0) == 4
    assert topo.get_rank(a=1, b=0, c=1) == 5
    assert topo.get_rank(a=1, b=1, c=0) == 6
    assert topo.get_rank(a=1, b=1, c=1) == 7

    assert topo.get_axis_list('a', 0) == [0, 1, 2, 3]
    assert topo.get_axis_list('a', 1) == [4, 5, 6, 7]
    assert topo.get_axis_list('b', 0) == [0, 1, 4, 5]
    assert topo.get_axis_list('b', 1) == [2, 3, 6, 7]
    assert topo.get_axis_list('c', 0) == [0, 2, 4, 6]
    assert topo.get_axis_list('c', 1) == [1, 3, 5, 7]

    assert topo.get_coord(0) == topo.ProcessCoord(0, 0, 0)
    assert topo.get_coord(1) == topo.ProcessCoord(0, 0, 1)
    assert topo.get_coord(2) == topo.ProcessCoord(0, 1, 0)
    assert topo.get_coord(3) == topo.ProcessCoord(0, 1, 1)
    assert topo.get_coord(4) == topo.ProcessCoord(1, 0, 0)
    assert topo.get_coord(5) == topo.ProcessCoord(1, 0, 1)
    assert topo.get_coord(6) == topo.ProcessCoord(1, 1, 0)
    assert topo.get_coord(7) == topo.ProcessCoord(1, 1, 1)

    assert topo.filter_match(a=0) == [0, 1, 2, 3]
    assert topo.filter_match(b=1, c=1) == [3, 7]
    assert topo.filter_match(a=1, b=1, c=1) == [7]

    # Easy access method
    assert topo.get_coord(0).a == 0


def test_topology_comm_list():
    topo = Topo(axes=['pipe', 'data', 'model'], dims=[2, 2, 2])

    assert topo.get_rank(pipe=0, data=0, model=0) == 0
    assert topo.get_rank(pipe=0, data=0, model=1) == 1
    assert topo.get_rank(pipe=0, data=1, model=0) == 2
    assert topo.get_rank(pipe=0, data=1, model=1) == 3
    assert topo.get_rank(pipe=1, data=0, model=0) == 4
    assert topo.get_rank(pipe=1, data=0, model=1) == 5
    assert topo.get_rank(pipe=1, data=1, model=0) == 6
    assert topo.get_rank(pipe=1, data=1, model=1) == 7

    pipe_list = [
aiss's avatar
aiss committed
136
137
138
139
        [0, 4],  # data=0, model=0
        [1, 5],  # data=0, model=1
        [2, 6],  # data=1, model=0
        [3, 7],  # data=1, model=1
aiss's avatar
aiss committed
140
141
142
143
    ]
    assert topo.get_axis_comm_lists('pipe') == pipe_list

    data_list = [
aiss's avatar
aiss committed
144
145
146
147
        [0, 2],  # pipe=0, model=0
        [1, 3],  # pipe=0, model=1
        [4, 6],  # pipe=1, model=0
        [5, 7],  # pipe=1, model=1
aiss's avatar
aiss committed
148
149
150
151
    ]
    assert topo.get_axis_comm_lists('data') == data_list

    model_list = [
aiss's avatar
aiss committed
152
153
154
155
        [0, 1],  # pipe=0, data=0
        [2, 3],  # pipe=0, data=1
        [4, 5],  # pipe=1, data=0
        [6, 7],  # pipe=1, data=1
aiss's avatar
aiss committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    ]
    assert topo.get_axis_comm_lists('model') == model_list

    # Handle nonsense. We don't want to RuntimeError because it allows us to write more
    # generalized code for data/model/pipe parallelism
    assert topo.get_axis_comm_lists('jeff') == []


class TestDistributedTopology(DistributedTest):
    world_size = 4

    def test_grid_pipe_data(self):
        topo = Topo(axes=['pipe', 'data'], dims=[2, 2])
        grid = Grid(topology=topo)

        assert grid._is_grid_valid()

        rank = dist.get_rank()

        assert grid.is_first_stage == (grid.get_stage_id() == 0)
aiss's avatar
aiss committed
176
        assert grid.is_last_stage == (grid.get_stage_id() == grid.get_pipe_parallel_world_size() - 1)
aiss's avatar
aiss committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

        # Test collectives along the pipeline parallel process groups
        rank_tensor = torch.LongTensor(data=[rank]).to(get_accelerator().device_name())
        dist.all_reduce(rank_tensor, group=grid.get_pipe_parallel_group())
        pipe_group = grid.pp_group
        assert torch.all(rank_tensor == sum(pipe_group))

        # Test collectives along the data parallel process groups
        rank_tensor = torch.LongTensor(data=[rank]).to(get_accelerator().device_name())
        dist.all_reduce(rank_tensor, group=grid.get_data_parallel_group())
        data_group = grid.dp_group
        assert torch.all(rank_tensor == sum(data_group))

    def test_stage_to_global(self):
        topo = Topo(axes=['pipe', 'data'], dims=[2, 2])
        grid = Grid(topology=topo)

        assert grid._is_grid_valid()

        assert grid.stage_to_global(stage_id=0, data=0) == 0
        assert grid.stage_to_global(stage_id=0, data=1) == 1
        assert grid.stage_to_global(stage_id=1, data=0) == 2
        assert grid.stage_to_global(stage_id=1, data=1) == 3

        me = topo.get_coord(rank=dist.get_rank())
        if me.data == 0:
            assert grid.stage_to_global(stage_id=0) == 0
            assert grid.stage_to_global(stage_id=1) == 2
        else:
            assert grid.stage_to_global(stage_id=0) == 1
            assert grid.stage_to_global(stage_id=1) == 3


def test_primes():
    """ Test prime factorizations. """
aiss's avatar
aiss committed
212

aiss's avatar
aiss committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    def _product(ps):
        p = 1
        for num in ps:
            p *= num
        return p

    with pytest.raises(ValueError):
        _prime_factors(0)

    for x in range(1, 30):
        primes = _prime_factors(x)
        assert _product(primes) == x
        for p in primes:
            assert _prime_factors(p) == [p]