test_fp16.py 24.9 KB
Newer Older
aiss's avatar
aiss committed
1
2
3
4
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team
aiss's avatar
aiss committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

import torch
import deepspeed.comm as dist
import deepspeed
import pytest
from deepspeed.ops.adam import FusedAdam
from unit.common import DistributedTest
from unit.simple_model import SimpleModel, SimpleOptimizer, random_dataloader, SimpleMoEModel, sequence_dataloader
from unit.util import required_torch_version
from deepspeed.accelerator import get_accelerator
from deepspeed.ops.op_builder import CPUAdamBuilder

try:
    from apex import amp  # noqa: F401
    _amp_available = True
except ImportError:
    _amp_available = False
aiss's avatar
aiss committed
22
amp_available = pytest.mark.skipif(not _amp_available, reason="apex/amp is not installed")
aiss's avatar
aiss committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42


class TestLambFP32GradClip(DistributedTest):
    world_size = 2

    def test(self):
        config_dict = {
            "train_batch_size": 2,
            "steps_per_print": 1,
            "optimizer": {
                "type": "Lamb",
                "params": {
                    "lr": 0.00015
                }
            },
            "gradient_clipping": 1.0
        }
        hidden_dim = 10

        model = SimpleModel(hidden_dim)
aiss's avatar
aiss committed
43
        model, _, _, _ = deepspeed.initialize(config=config_dict, model=model, model_parameters=model.parameters())
aiss's avatar
aiss committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device,
                                        dtype=torch.float)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()


class TestLambFP16(DistributedTest):
    world_size = 2

    def test__basic(self):
        config_dict = {
            "train_batch_size": 2,
            "steps_per_print": 1,
            "optimizer": {
                "type": "Lamb",
                "params": {
                    "lr": 0.00015
                }
            },
            "gradient_clipping": 1.0,
            "fp16": {
                "enabled": True
            }
        }
        hidden_dim = 10

        model = SimpleModel(hidden_dim)
aiss's avatar
aiss committed
76
77
        model, _, _, _ = deepspeed.initialize(config=config_dict, model=model, model_parameters=model.parameters())
        data_loader = random_dataloader(model=model, total_samples=50, hidden_dim=hidden_dim, device=model.device)
aiss's avatar
aiss committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    def test_empty_grad(self):
        config_dict = {
            "train_batch_size": 2,
            "steps_per_print": 1,
            "optimizer": {
                "type": "Lamb",
                "params": {
                    "lr": 0.00015
                }
            },
            "gradient_clipping": 1.0,
            "fp16": {
                "enabled": True
            }
        }
        hidden_dim = 10

        model = SimpleModel(hidden_dim, empty_grad=True)
aiss's avatar
aiss committed
101
102
        model, _, _, _ = deepspeed.initialize(config=config_dict, model=model, model_parameters=model.parameters())
        data_loader = random_dataloader(model=model, total_samples=50, hidden_dim=hidden_dim, device=model.device)
aiss's avatar
aiss committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()


class TestAdamFP32EmptyGrad(DistributedTest):
    world_size = 2

    def test(self):
        config_dict = {
            "train_batch_size": 2,
            "steps_per_print": 1,
            "optimizer": {
                "type": "Adam",
                "params": {
                    "lr": 0.00015
                }
            },
            "gradient_clipping": 1.0,
            "fp16": {
                "enabled": False
            }
        }
        hidden_dim = 10

        model = SimpleModel(hidden_dim, empty_grad=True)
aiss's avatar
aiss committed
130
        model, _, _, _ = deepspeed.initialize(config=config_dict, model=model, model_parameters=model.parameters())
aiss's avatar
aiss committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device,
                                        dtype=torch.float)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()


class TestAdamwFP16Basic(DistributedTest):
    world_size = 1

    def test(self):
aiss's avatar
aiss committed
146
        config_dict = {"train_batch_size": 1, "steps_per_print": 1, "fp16": {"enabled": True}}
aiss's avatar
aiss committed
147
148
149
150
        hidden_dim = 10

        model = SimpleModel(hidden_dim)
        optimizer = torch.optim.AdamW(params=model.parameters())
aiss's avatar
aiss committed
151
152
        model, _, _, _ = deepspeed.initialize(config=config_dict, model=model, optimizer=optimizer)
        data_loader = random_dataloader(model=model, total_samples=50, hidden_dim=hidden_dim, device=model.device)
aiss's avatar
aiss committed
153
154
155
156
157
158
159
160
161
162
163
164
165
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()


class TestFP16OptimizerForMoE(DistributedTest):
    world_size = 2

    def test_unfused_gradnorm(self, monkeypatch):
        if not required_torch_version():
            pytest.skip("DeepSpeed MoE tests need torch 1.8 or higher to run correctly")

aiss's avatar
aiss committed
166
        config_dict = {"train_batch_size": 2, "steps_per_print": 1, "fp16": {"enabled": True}}
aiss's avatar
aiss committed
167
168
169
170
        hidden_dim = 10

        def mock_unscale_and_clip_grads(total_norm, apply_scale=True):
            torch_norm_tensor = get_accelerator().FloatTensor([total_norm])
aiss's avatar
aiss committed
171
            all_gather_results = [torch.zeros_like(torch_norm_tensor) for _ in range(dist.get_world_size())]
aiss's avatar
aiss committed
172
173
174
175
176
177
178
179
            dist.all_gather(all_gather_results, torch_norm_tensor)
            assert len(set([x.item() for x in all_gather_results])) == 1
            return 1.0

        # initialize MoE
        model = SimpleMoEModel(hidden_dim, ep_size=2)
        optimizer = torch.optim.AdamW(params=model.parameters())
        engine, optimizer, _, _ = deepspeed.initialize(config=config_dict,
aiss's avatar
aiss committed
180
181
182
183
184
                                                       model=model,
                                                       optimizer=optimizer,
                                                       dist_init_required=False)
        monkeypatch.setattr(optimizer, 'unscale_and_clip_grads', mock_unscale_and_clip_grads)
        data_loader = sequence_dataloader(model=engine, total_samples=50, hidden_dim=hidden_dim, device=engine.device)
aiss's avatar
aiss committed
185
186
187
188
189
190
191
192
193
        for n, batch in enumerate(data_loader):
            loss = engine(batch[0], batch[1])
            engine.backward(loss)
            engine.step()

    def test_fused_gradnorm(self, monkeypatch):
        if not required_torch_version():
            pytest.skip("DeepSpeed MoE tests need torch 1.8 or higher to run correctly")

aiss's avatar
aiss committed
194
        config_dict = {"train_batch_size": 2, "steps_per_print": 1, "fp16": {"enabled": True}}
aiss's avatar
aiss committed
195
196
197
198
        hidden_dim = 10

        def mock_unscale_and_clip_grads(grads_groups_flat, total_norm, apply_scale=True):
            torch_norm_tensor = get_accelerator().FloatTensor([total_norm])
aiss's avatar
aiss committed
199
            all_gather_results = [torch.zeros_like(torch_norm_tensor) for _ in range(dist.get_world_size())]
aiss's avatar
aiss committed
200
201
202
203
204
205
206
207
208
            dist.all_gather(all_gather_results, torch_norm_tensor)
            assert len(set([x.item() for x in all_gather_results])) == 1
            return 1.0

        # initialize MoE
        model = SimpleMoEModel(hidden_dim, ep_size=2)
        # optimizer = torch.optim.AdamW(params=model.parameters())
        optimizer = FusedAdam(params=model.parameters())
        engine, optimizer, _, _ = deepspeed.initialize(config=config_dict,
aiss's avatar
aiss committed
209
210
211
212
213
                                                       model=model,
                                                       optimizer=optimizer,
                                                       dist_init_required=False)
        monkeypatch.setattr(optimizer, 'unscale_and_clip_grads', mock_unscale_and_clip_grads)
        data_loader = sequence_dataloader(model=engine, total_samples=50, hidden_dim=hidden_dim, device=engine.device)
aiss's avatar
aiss committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
        for n, batch in enumerate(data_loader):
            loss = engine(batch[0], batch[1])
            engine.backward(loss)
            engine.step()

    @pytest.mark.parametrize("fused_lamb_legacy", [(False), (True)])
    def test_lamb_gradnorm(self, monkeypatch, fused_lamb_legacy: bool):
        if not required_torch_version():
            pytest.skip("DeepSpeed MoE tests need torch 1.8 or higher to run correctly")

        config_dict = {
            "train_batch_size": 2,
            "steps_per_print": 1,
            "fp16": {
                "enabled": True
            },
            "optimizer": {
                "type": "Lamb",
                "params": {
                    "lr": 0.00015
                }
            }
        }
        hidden_dim = 10

        def mock_unscale_and_clip_grads(total_norm, apply_scale=True):
            torch_norm_tensor = get_accelerator().FloatTensor([total_norm])
aiss's avatar
aiss committed
241
            all_gather_results = [torch.zeros_like(torch_norm_tensor) for _ in range(dist.get_world_size())]
aiss's avatar
aiss committed
242
243
244
245
246
247
248
            dist.all_gather(all_gather_results, torch_norm_tensor)
            assert len(set([x.item() for x in all_gather_results])) == 1
            return 1.0

        # initialize MoE
        model = SimpleMoEModel(hidden_dim, ep_size=2)
        engine, optimizer, _, _ = deepspeed.initialize(config=config_dict,
aiss's avatar
aiss committed
249
250
251
252
                                                       model=model,
                                                       model_parameters=model.parameters(),
                                                       dist_init_required=False)
        monkeypatch.setattr(optimizer, 'unscale_and_clip_grads', mock_unscale_and_clip_grads)
aiss's avatar
aiss committed
253
        optimizer.fused_lamb_legacy = fused_lamb_legacy
aiss's avatar
aiss committed
254
        data_loader = sequence_dataloader(model=engine, total_samples=50, hidden_dim=hidden_dim, device=engine.device)
aiss's avatar
aiss committed
255
256
257
258
259
260
261
262
263
264
        for n, batch in enumerate(data_loader):
            loss = engine(batch[0], batch[1])
            engine.backward(loss)
            engine.step()


class TestAdamwFP16EmptyGrad(DistributedTest):
    world_size = 1

    def test(self):
aiss's avatar
aiss committed
265
        config_dict = {"train_batch_size": 1, "steps_per_print": 1, "fp16": {"enabled": True}}
aiss's avatar
aiss committed
266
267
268
269
        hidden_dim = 10

        model = SimpleModel(hidden_dim)
        optimizer = torch.optim.AdamW(params=model.parameters())
aiss's avatar
aiss committed
270
271
        model, _, _, _ = deepspeed.initialize(config=config_dict, model=model, optimizer=optimizer)
        data_loader = random_dataloader(model=model, total_samples=50, hidden_dim=hidden_dim, device=model.device)
aiss's avatar
aiss committed
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()


@pytest.mark.parametrize("zero_stage", [1, 2, 3])
@pytest.mark.parametrize("use_cpu_offload", [True, False])
class TestAdamFP16ZeroOneCycleCompatibility(DistributedTest):
    world_size = 1

    def test(self, zero_stage, use_cpu_offload):
        if use_cpu_offload and not deepspeed.ops.__compatible_ops__[CPUAdamBuilder.NAME]:
            pytest.skip("cpu-adam is not compatible")

        config_dict = {
            "train_batch_size": 1,
            "steps_per_print": 1,
            "optimizer": {
                "type": "Adam",
                "params": {
                    "lr": 0.00015
                }
            },
            "scheduler": {
                "type": "OneCycle",
                "params": {
                    "cycle_first_step_size": 16000,
                    "cycle_first_stair_count": 8000,
                    "decay_step_size": 16000,
                    "cycle_min_lr": 1e-06,
                    "cycle_max_lr": 3e-05,
                    "decay_lr_rate": 1e-07,
                    "cycle_min_mom": 0.85,
                    "cycle_max_mom": 0.99,
                    "decay_mom_rate": 0.0
                }
            },
            "fp16": {
                "enabled": True
            },
            "zero_optimization": {
                "stage": zero_stage,
                "cpu_offload": use_cpu_offload
            }
        }
        hidden_dim = 10

        model = SimpleModel(hidden_dim)
aiss's avatar
aiss committed
321
322
        model, _, _, _ = deepspeed.initialize(config=config_dict, model=model, model_parameters=model.parameters())
        data_loader = random_dataloader(model=model, total_samples=50, hidden_dim=hidden_dim, device=model.device)
aiss's avatar
aiss committed
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()


@pytest.mark.parametrize("zero_stage", [1, 2, 3])
@pytest.mark.parametrize("use_cpu_offload", [True, False])
@pytest.mark.parametrize("hidden_dim", [9, 10])
class TestZeroStaticScale(DistributedTest):
    world_size = 1

    def test(self, zero_stage, use_cpu_offload, hidden_dim):
        if use_cpu_offload and not deepspeed.ops.__compatible_ops__[CPUAdamBuilder.NAME]:
            pytest.skip("cpu-adam is not compatible")

        config_dict = {
            "train_batch_size": 4,
            "steps_per_print": 1,
            "optimizer": {
                "type": "Adam",
                "params": {
                    "lr": 0.00015
                }
            },
            "fp16": {
                "enabled": True,
                "loss_scale": 138.
            },
            "zero_optimization": {
                "stage": zero_stage,
                "cpu_offload": use_cpu_offload
            }
        }

        model = SimpleModel(hidden_dim)
aiss's avatar
aiss committed
359
        model, optim, _, _ = deepspeed.initialize(config=config_dict, model=model, model_parameters=model.parameters())
aiss's avatar
aiss committed
360
361
362
363
364
365

        # Ensure the static scaler is configured.
        assert optim.dynamic_loss_scale == False
        assert optim.loss_scaler.loss_scale == 138.

        # Now make sure things work..
aiss's avatar
aiss committed
366
        data_loader = random_dataloader(model=model, total_samples=10, hidden_dim=hidden_dim, device=model.device)
aiss's avatar
aiss committed
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()


@pytest.mark.parametrize("zero_stage", [1, 2, 3])
@pytest.mark.parametrize("use_cpu_offload", [True, False])
class TestZeroAllowUntestedOptimizer(DistributedTest):
    world_size = 1

    def test(self, zero_stage, use_cpu_offload):
        if use_cpu_offload and not deepspeed.ops.__compatible_ops__[CPUAdamBuilder.NAME]:
            pytest.skip("cpu-adam is not compatible")

        config_dict = {
            "train_batch_size": 4,
            "steps_per_print": 1,
            "fp16": {
                "enabled": True,
            },
            "zero_optimization": {
                "stage": zero_stage,
                "cpu_offload": use_cpu_offload
            },
aiss's avatar
aiss committed
392
393
            "zero_allow_untested_optimizer": False,
            "zero_force_ds_cpu_optimizer": False
aiss's avatar
aiss committed
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
        }
        hidden_dim = 10

        model = SimpleModel(hidden_dim)
        optimizer = SimpleOptimizer(model.parameters())
        with pytest.raises(AssertionError):
            model, optim, _, _ = deepspeed.initialize(config=config_dict,
                                                      model=model,
                                                      optimizer=optimizer,
                                                      model_parameters=model.parameters())


@pytest.mark.parametrize("zero_stage", [1, 2, 3])
@pytest.mark.parametrize("use_cpu_offload", [True, False])
class TestZeroEmptyPartition(DistributedTest):
    world_size = 3

    def test(self, zero_stage, use_cpu_offload):
        if use_cpu_offload and not deepspeed.ops.__compatible_ops__[CPUAdamBuilder.NAME]:
            pytest.skip("cpu-adam is not compatible")

        if zero_stage == 3:
            pytest.skip("skip for now")

        config_dict = {
            "train_micro_batch_size_per_gpu": 1,
            "gradient_accumulation_steps": 1,
            "fp16": {
                "enabled": True,
                "initial_scale_power": 8
            },
            "optimizer": {
                "type": "Adam",
                "params": {
                    "lr": 0.00015
                }
            },
            "zero_optimization": {
                "stage": zero_stage,
                "cpu_offload": use_cpu_offload,
                "reduce_bucket_size": 100,
                "allgather_bucket_size": 100
            }
        }
        hidden_dim = 1
        model = SimpleModel(hidden_dim)

        # Ensure model has 2 parameters, to cause empty partition with DP=3
        assert len(list(model.parameters())) == 2
aiss's avatar
aiss committed
443
        model, _, _, _ = deepspeed.initialize(config=config_dict, model=model, model_parameters=model.parameters())
aiss's avatar
aiss committed
444
445

        # Now make sure things work..
aiss's avatar
aiss committed
446
        data_loader = random_dataloader(model=model, total_samples=1, hidden_dim=hidden_dim, device=model.device)
aiss's avatar
aiss committed
447
448
449
450
451
452
453
454
455
456
457
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()


@amp_available
class TestAmp(DistributedTest):
    world_size = 2

    def test_adam_basic(self):
aiss's avatar
aiss committed
458
        config_dict = {"train_batch_size": 2, "steps_per_print": 1, "amp": {"enabled": True}}
aiss's avatar
aiss committed
459
460
461
462
        hidden_dim = 10

        model = SimpleModel(hidden_dim)
        optimizer = torch.optim.Adam(params=model.parameters())
aiss's avatar
aiss committed
463
464
        model, _, _, _ = deepspeed.initialize(config=config_dict, model=model, optimizer=optimizer)
        data_loader = random_dataloader(model=model, total_samples=50, hidden_dim=hidden_dim, device=model.device)
aiss's avatar
aiss committed
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    def test_lamb_basic(self):
        config_dict = {
            "train_batch_size": 2,
            "steps_per_print": 1,
            "optimizer": {
                "type": "Lamb",
                "params": {
                    "lr": 0.00015
                }
            },
            "gradient_clipping": 1.0,
            "amp": {
                "enabled": True,
            }
        }
        hidden_dim = 10

        model = SimpleModel(hidden_dim)
aiss's avatar
aiss committed
488
489
        model, _, _, _ = deepspeed.initialize(config=config_dict, model=model, model_parameters=model.parameters())
        data_loader = random_dataloader(model=model, total_samples=50, hidden_dim=hidden_dim, device=model.device)
aiss's avatar
aiss committed
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    def test_adam_O2(self):
        config_dict = {
            "train_batch_size": 2,
            "steps_per_print": 1,
            "optimizer": {
                "type": "Adam",
                "params": {
                    "lr": 0.00015
                }
            },
            "gradient_clipping": 1.0,
            "amp": {
                "enabled": True,
                "opt_level": "O2"
            }
        }
        hidden_dim = 10

        model = SimpleModel(hidden_dim)
aiss's avatar
aiss committed
514
515
        model, _, _, _ = deepspeed.initialize(config=config_dict, model=model, model_parameters=model.parameters())
        data_loader = random_dataloader(model=model, total_samples=50, hidden_dim=hidden_dim, device=model.device)
aiss's avatar
aiss committed
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    def test_adam_O2_empty_grad(self):
        config_dict = {
            "train_batch_size": 2,
            "steps_per_print": 1,
            "optimizer": {
                "type": "Adam",
                "params": {
                    "lr": 0.00015
                }
            },
            "gradient_clipping": 1.0,
            "amp": {
                "enabled": True,
                "opt_level": "O2"
            }
        }
        hidden_dim = 10

        model = SimpleModel(hidden_dim)
aiss's avatar
aiss committed
540
541
        model, _, _, _ = deepspeed.initialize(config=config_dict, model=model, model_parameters=model.parameters())
        data_loader = random_dataloader(model=model, total_samples=50, hidden_dim=hidden_dim, device=model.device)
aiss's avatar
aiss committed
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()


@pytest.mark.parametrize("zero_stage", [1, 2, 3])
@pytest.mark.parametrize("optimizer_constructor", [FusedAdam, torch.optim.Adam])
class TestZeroSupportedClientOptimizer(DistributedTest):
    world_size = 1

    def test(self, zero_stage, optimizer_constructor):
        config_dict = {
            "train_batch_size": 2,
            "steps_per_print": 1,
            "fp16": {
                "enabled": True
            },
            "zero_optimization": {
                "stage": zero_stage
            }
        }
        hidden_dim = 10

        model = SimpleModel(hidden_dim)
        client_optimizer = optimizer_constructor(params=model.parameters())
aiss's avatar
aiss committed
568
        model, _, _, _ = deepspeed.initialize(config=config_dict, model=model, optimizer=client_optimizer)
aiss's avatar
aiss committed
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599


class TestZero2ReduceScatterOff(DistributedTest):
    world_size = 2

    def test(self):
        config_dict = {
            "train_batch_size": 2,
            "steps_per_print": 1,
            "optimizer": {
                "type": "Adam",
                "params": {
                    "lr": 0.00015
                }
            },
            "gradient_clipping": 1.0,
            "zero_optimization": {
                "stage": 2,
                "contiguous_gradients": True,
                "allgather_bucket_size": 2000000000,
                "reduce_bucket_size": 200000000,
                "overlap_comm": False,
                "reduce_scatter": False
            },
            "fp16": {
                "enabled": True
            }
        }
        hidden_dim = 10

        model = SimpleModel(hidden_dim)
aiss's avatar
aiss committed
600
601
        model, _, _, _ = deepspeed.initialize(config=config_dict, model=model, model_parameters=model.parameters())
        data_loader = random_dataloader(model=model, total_samples=50, hidden_dim=hidden_dim, device=model.device)
aiss's avatar
aiss committed
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()


@pytest.mark.parametrize("adam_type", ["Adam", "AdamW"])
@pytest.mark.parametrize("torch_impl", [True, False])
class TestFP16AdamTypes(DistributedTest):
    world_size = 1

    def test(self, adam_type, torch_impl):
        config_dict = {
            "train_batch_size": 1,
            "steps_per_print": 1,
            "fp16": {
                "enabled": True,
                "initial_scale_power": 10
            },
            "optimizer": {
                "type": adam_type,
                "torch_adam": torch_impl,
                "params": {
                    "lr": 0.00015
                }
            }
        }
        hidden_dim = 10

        model = SimpleModel(hidden_dim)
aiss's avatar
aiss committed
632
        model, _, _, _ = deepspeed.initialize(config=config_dict, model=model, model_parameters=model.parameters())
aiss's avatar
aiss committed
633

aiss's avatar
aiss committed
634
        data_loader = random_dataloader(model=model, total_samples=10, hidden_dim=hidden_dim, device=model.device)
aiss's avatar
aiss committed
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665

        for _, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()


class TestZero3LazyScatter(DistributedTest):
    world_size = 1

    def test(self):
        config_dict = {
            "train_batch_size": 1,
            "steps_per_print": 1,
            "fp16": {
                "enabled": True,
                "initial_scale_power": 10
            },
            "optimizer": {
                "type": "AdamW",
                "params": {
                    "lr": 0.00015
                }
            },
            "zero_optimization": {
                "stage": 3
            }
        }
        hidden_dim = 10

        model = SimpleModel(hidden_dim)
aiss's avatar
aiss committed
666
        model, _, _, _ = deepspeed.initialize(config=config_dict, model=model, model_parameters=model.parameters())
aiss's avatar
aiss committed
667

aiss's avatar
aiss committed
668
        data_loader = random_dataloader(model=model, total_samples=10, hidden_dim=hidden_dim, device=model.device)
aiss's avatar
aiss committed
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694

        for _, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()


@pytest.mark.parametrize('stage', [1, 2, 3])
class TestZeroEmptyGrad(DistributedTest):
    world_size = 1

    def test(self, stage):
        config_dict = {
            "train_batch_size": 1,
            "steps_per_print": 1,
            "fp16": {
                "enabled": True
            },
            "zero_optimization": {
                "stage": stage
            }
        }
        hidden_dim = 10

        model = SimpleModel(hidden_dim)
        optimizer = torch.optim.Adam(model.parameters())
aiss's avatar
aiss committed
695
696
        model, _, _, _ = deepspeed.initialize(config=config_dict, model=model, optimizer=optimizer)
        data_loader = random_dataloader(model=model, total_samples=50, hidden_dim=hidden_dim, device=model.device)
aiss's avatar
aiss committed
697
698
699
700
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()