test_moe_tp.py 3.35 KB
Newer Older
aiss's avatar
aiss committed
1
2
3
4
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team
aiss's avatar
aiss committed
5
6
7
8
9
10
11
12
13
14

import torch
import deepspeed
import pytest
from unit.common import DistributedTest
from unit.util import required_torch_version
from deepspeed.moe.layer import MoE


class MPU():
aiss's avatar
aiss committed
15

aiss's avatar
aiss committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    def __init__(self, tp_world_size):
        self.rank = deepspeed.comm.get_rank()
        self.world_size = deepspeed.comm.get_world_size()
        self.tp_world_size = tp_world_size

        for i in range(0, self.world_size, tp_world_size):
            ranks = range(i, i + tp_world_size)
            group = deepspeed.comm.new_group(ranks)
            if self.rank in ranks:
                self.tp_group = group

        for i in range(0, tp_world_size):
            ranks = range(i, self.world_size, tp_world_size)
            group = deepspeed.comm.new_group(ranks)
            if self.rank in ranks:
                self.dp_group = group

    def get_model_parallel_rank(self):
        return self.rank % self.tp_world_size

    def get_model_parallel_world_size(self):
        return self.tp_world_size

    def get_data_parallel_rank(self):
        return self.rank // self.tp_world_size

    def get_data_parallel_world_size(self):
        return self.world_size // self.tp_world_size

    def get_data_parallel_group(self):
        return self.dp_group

    def get_model_parallel_group(self):
        return self.tp_group


@pytest.mark.parametrize("ep_size, tp_size", [(1, 2), (1, 4), (2, 2)])
@pytest.mark.parametrize("enable_expert_tp", [True, False])
@pytest.mark.parametrize("use_residual", [True, False])
class TestMOETensorParallel(DistributedTest):
    world_size = 4

    def test(self, ep_size, tp_size, enable_expert_tp, use_residual):
        # TODO: replace this with a true parallel mlp in the future
        # and run convergence tests
        if not required_torch_version():
            pytest.skip("DeepSpeed MoE tests need torch 1.8 or higher to run correctly")

aiss's avatar
aiss committed
64
        config_dict = {"train_batch_size": 8, "steps_per_print": 1, "fp16": {"enabled": True}}
aiss's avatar
aiss committed
65
66
        hidden_dim = 16

aiss's avatar
aiss committed
67
68
69
        tensor_parallel_expert = torch.nn.Sequential(torch.nn.Linear(hidden_dim, 4 * hidden_dim // tp_size),
                                                     torch.nn.ReLU(),
                                                     torch.nn.Linear(4 * hidden_dim // tp_size, hidden_dim))
aiss's avatar
aiss committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

        # set num experts to world size
        world_size = deepspeed.comm.get_world_size()
        model = MoE(
            hidden_size=hidden_dim,
            expert=tensor_parallel_expert,
            num_experts=world_size,
            ep_size=ep_size,
            use_residual=use_residual,
            enable_expert_tensor_parallelism=enable_expert_tp,
        )
        optimizer = torch.optim.AdamW(params=model.parameters())
        model, _, _, _ = deepspeed.initialize(config=config_dict,
                                              model=model,
                                              optimizer=optimizer,
                                              dist_init_required=False,
                                              mpu=MPU(tp_size))

        assert model.num_local_experts == world_size // ep_size
        if enable_expert_tp:
aiss's avatar
aiss committed
90
            assert deepspeed.utils.groups._get_expert_model_parallel_world_size() == tp_size
aiss's avatar
aiss committed
91
92
        else:
            assert deepspeed.utils.groups._get_expert_model_parallel_world_size() == 1