modelingpreln.py 72.8 KB
Newer Older
aiss's avatar
aiss committed
1
2
3
4
5
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

aiss's avatar
aiss committed
6
7
from __future__ import absolute_import, division, print_function, unicode_literals
# Copyright The Microsoft DeepSpeed Team
aiss's avatar
aiss committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# DeepSpeed note, code taken from commit 3d59216cec89a363649b4fe3d15295ba936ced0f
# https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT/modeling.py

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""

import copy
import json
import logging
import math
import os
import shutil
import tarfile
import tempfile
from io import open

import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from torch.utils import checkpoint
aiss's avatar
aiss committed
42
import deepspeed.comm as dist
aiss's avatar
aiss committed
43
44
45
46

from torch.nn import Module
import torch.nn.functional as F
import torch.nn.init as init
aiss's avatar
aiss committed
47
from deepspeed.accelerator import get_accelerator
aiss's avatar
aiss committed
48
49
50
51
52
53
54
55

#from numba import cuda

#from deepspeed_cuda import DeepSpeedSoftmaxConfig, DeepSpeedSoftmax

logger = logging.getLogger(__name__)

PRETRAINED_MODEL_ARCHIVE_MAP = {
aiss's avatar
aiss committed
56
57
58
59
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased.tar.gz",
aiss's avatar
aiss committed
60
61
62
63
    'bert-base-multilingual-uncased':
    "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz",
    'bert-base-multilingual-cased':
    "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased.tar.gz",
aiss's avatar
aiss committed
64
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz",
aiss's avatar
aiss committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
}
CONFIG_NAME = 'bert_config.json'
WEIGHTS_NAME = 'pytorch_model.bin'
TF_WEIGHTS_NAME = 'model.ckpt'


def load_tf_weights_in_bert(model, tf_checkpoint_path):
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import re
        import numpy as np
        import tensorflow as tf
    except ImportError:
aiss's avatar
aiss committed
79
80
        print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
              "https://www.tensorflow.org/install/ for installation instructions.")
aiss's avatar
aiss committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
        raise
    tf_path = os.path.abspath(tf_checkpoint_path)
    print("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        print("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name.split('/')
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
        if any(n in ["adam_v", "adam_m"] for n in name):
            print("Skipping {}".format("/".join(name)))
            continue
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
                l = re.split(r'_(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'kernel' or l[0] == 'gamma':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'output_bias' or l[0] == 'beta':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'output_weights':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        if m_name[-11:] == '_embeddings':
            pointer = getattr(pointer, 'weight')
        elif m_name == 'kernel':
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model


"""
@torch.jit.script
def f_gelu(x):
    return x * 0.5 * (1.0 + torch.erf(x / 1.41421))
@torch.jit.script
def bias_gelu(bias, y):
    x = bias + y
    return x * 0.5 * (1.0 + torch.erf(x / 1.41421))
@torch.jit.script
def bias_tanh(bias, y):
    x = bias + y
    return torch.tanh(x)
 """


def f_gelu(x):
    x_type = x.dtype
    x = x.float()
    x = x * 0.5 * (1.0 + torch.erf(x / 1.41421))
    return x.to(x_type)


def bias_gelu(bias, y):
    y_type = y.dtype
    x = bias.float() + y.float()
    x = x * 0.5 * (1.0 + torch.erf(x / 1.41421))
    return x.to(y_type)


def bias_tanh(bias, y):
    y_type = y.dtype
    x = bias.float() + y.float()
    x = torch.tanh(x)
    return x.to(y_type)


def gelu(x):
    """Implementation of the gelu activation function.
        For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
        Also see https://arxiv.org/abs/1606.08415
    """
    return f_gelu(x)


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}


class GPUTimer:
aiss's avatar
aiss committed
185

aiss's avatar
aiss committed
186
187
    def __init__(self):
        super().__init__()
aiss's avatar
aiss committed
188
189
        self.start = get_accelerator().Event()  # noqa: F821
        self.stop = get_accelerator().Event()  # noqa: F821
aiss's avatar
aiss committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

    def record(self):
        self.start.record()

    def elapsed(self):
        self.stop.record()
        self.stop.synchronize()
        return self.start.elapsed_time(self.stop) / 1000.0


class LinearActivation(Module):
    r"""Fused Linear and activation Module.
    """
    __constants__ = ['bias']

aiss's avatar
aiss committed
205
    def __init__(self, in_features, out_features, weights, biases, act='gelu', bias=True):
aiss's avatar
aiss committed
206
207
208
209
210
        super(LinearActivation, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.fused_gelu = False
        self.fused_tanh = False
aiss's avatar
aiss committed
211
        if isinstance(act, str):
aiss's avatar
aiss committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
            if bias and act == 'gelu':
                self.fused_gelu = True
            elif bias and act == 'tanh':
                self.fused_tanh = True
            else:
                self.act_fn = ACT2FN[act]
        else:
            self.act_fn = act
        #self.weight = Parameter(torch.Tensor(out_features, in_features))
        self.weight = weights[5]
        self.bias = biases[5]
        #if bias:
        #    self.bias = Parameter(torch.Tensor(out_features))
        #else:
        #    self.register_parameter('bias', None)
        #self.reset_parameters()

    def reset_parameters(self):
        init.kaiming_uniform_(self.weight, a=math.sqrt(5))
        if self.bias is not None:
            fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
            bound = 1 / math.sqrt(fan_in)
            init.uniform_(self.bias, -bound, bound)

    def forward(self, input):
        if self.fused_gelu:
            #timing = []
            #t1 = GPUTimer()
            #t1.record()
            y = F.linear(input, self.weight, None)
            #timing.append(t1.elapsed())
            #t1.record()
            bg = bias_gelu(self.bias, y)
            #timing.append(t1.elapsed())
            return bg
        elif self.fused_tanh:
            return bias_tanh(self.bias, F.linear(input, self.weight, None))
        else:
            return self.act_fn(F.linear(input, self.weight, self.bias))

    def extra_repr(self):
aiss's avatar
aiss committed
253
254
        return 'in_features={}, out_features={}, bias={}'.format(self.in_features, self.out_features, self.bias
                                                                 is not None)
aiss's avatar
aiss committed
255
256
257
258
259


class BertConfig(object):
    """Configuration class to store the configuration of a `BertModel`.
    """
aiss's avatar
aiss committed
260

aiss's avatar
aiss committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
    def __init__(self,
                 vocab_size_or_config_json_file,
                 hidden_size=768,
                 num_hidden_layers=12,
                 num_attention_heads=12,
                 intermediate_size=3072,
                 batch_size=8,
                 hidden_act="gelu",
                 hidden_dropout_prob=0.1,
                 attention_probs_dropout_prob=0.1,
                 max_position_embeddings=512,
                 type_vocab_size=2,
                 initializer_range=0.02,
                 fp16=False):
        """Constructs BertConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
            hidden_size: Size of the encoder layers and the pooler layer.
            num_hidden_layers: Number of hidden layers in the Transformer encoder.
            num_attention_heads: Number of attention heads for each attention layer in
                the Transformer encoder.
            intermediate_size: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            hidden_act: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            hidden_dropout_prob: The dropout probability for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_probs_dropout_prob: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            type_vocab_size: The vocabulary size of the `token_type_ids` passed into
                `BertModel`.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
        """
aiss's avatar
aiss committed
299
        if isinstance(vocab_size_or_config_json_file, str):
aiss's avatar
aiss committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.batch_size = batch_size
            self.hidden_act = hidden_act
            self.intermediate_size = intermediate_size
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.initializer_range = initializer_range
            self.fp16 = fp16
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `BertConfig` from a Python dictionary of parameters."""
        config = BertConfig(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `BertConfig` from a json file of parameters."""
        with open(json_file, "r", encoding='utf-8') as reader:
            text = reader.read()
        return cls.from_dict(json.loads(text))

    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"


try:
    import apex
    #apex.amp.register_half_function(apex.normalization.fused_layer_norm, 'FusedLayerNorm')
    import apex.normalization
    #apex.amp.register_float_function(apex.normalization.FusedLayerNorm, 'forward')
    BertLayerNorm = apex.normalization.FusedLayerNorm
except ImportError:
aiss's avatar
aiss committed
357
    print("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex.")
aiss's avatar
aiss committed
358
359

    class BertLayerNorm(nn.Module):
aiss's avatar
aiss committed
360

aiss's avatar
aiss committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
        def __init__(self, hidden_size, eps=1e-12):
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(BertLayerNorm, self).__init__()
            self.weight = nn.Parameter(torch.ones(hidden_size))
            self.bias = nn.Parameter(torch.zeros(hidden_size))
            self.variance_epsilon = eps

        def forward(self, x):
            pdtype = x.dtype
            x = x.float()
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x.to(pdtype) + self.bias

        #def forward(self, x):
        #    u = x.mean(-1, keepdim=True)
        #    s = (x - u).pow(2).mean(-1, keepdim=True)
        #    x = (x - u) / torch.sqrt(s + self.variance_epsilon)
        #    return self.weight * x + self.bias


class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings.
    """
aiss's avatar
aiss committed
387

aiss's avatar
aiss committed
388
389
390
    def __init__(self, config):
        super(BertEmbeddings, self).__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
aiss's avatar
aiss committed
391
392
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
aiss's avatar
aiss committed
393
394
395
396
397
398
399
400

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, input_ids, token_type_ids=None):
        seq_length = input_ids.size(1)
aiss's avatar
aiss committed
401
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
aiss's avatar
aiss committed
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = words_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class BertSelfAttention(nn.Module):
aiss's avatar
aiss committed
417

aiss's avatar
aiss committed
418
419
420
    def __init__(self, i, config, weights, biases):
        super(BertSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
aiss's avatar
aiss committed
421
422
            raise ValueError("The hidden size (%d) is not a multiple of the number of attention "
                             "heads (%d)" % (config.hidden_size, config.num_attention_heads))
aiss's avatar
aiss committed
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.query.weight = weights[0]
        self.query.bias = biases[0]
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.key.weight = weights[1]
        self.key.bias = biases[1]
        self.value = nn.Linear(config.hidden_size, self.all_head_size)
        self.value.weight = weights[2]
        self.value.bias = biases[2]

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
        self.softmax = nn.Softmax(dim=-1)
        #self.softmax_config = DeepSpeedSoftmaxConfig()
        #self.softmax_config.batch_size = config.batch_size
        #self.softmax_config.max_seq_length = config.max_position_embeddings
        #self.softmax_config.hidden_size = config.hidden_size
        #self.softmax_config.heads = config.num_attention_heads
        #self.softmax_config.softmax_id = i
        #self.softmax_config.fp16 = config.fp16
        #self.softmax_config.prob_drop_out = 0.0
        #self.softmax = DeepSpeedSoftmax(i, self.softmax_config)

    def transpose_for_scores(self, x):
aiss's avatar
aiss committed
450
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
aiss's avatar
aiss committed
451
452
453
454
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def transpose_key_for_scores(self, x):
aiss's avatar
aiss committed
455
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
aiss's avatar
aiss committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 3, 1)

    def forward(self, hidden_states, attention_mask, grads=None):
        #timing = []
        #t1 = GPUTimer()
        #t1.record()
        mixed_query_layer = self.query(hidden_states)

        #timing.append(t1.elapsed())
        #print("Query elapsed: %s" % (time.clock() - start))
        #t1.record()
        mixed_key_layer = self.key(hidden_states)

        #timing.append(t1.elapsed())
        #print("Key elapsed: %s" % (time.clock() - start))
        #t1.record()
        mixed_value_layer = self.value(hidden_states)
        #timing.append(t1.elapsed())
        #print("Value elapsed: %s" % (time.clock() - start))

        #t1.record()
        query_layer = self.transpose_for_scores(mixed_query_layer)
        # print(query_layer)
        #timing.append(t1.elapsed())
        #print("Query-Transform elapsed: %s" % (time.clock() - start))
        #t1.record()
        key_layer = self.transpose_key_for_scores(mixed_key_layer)
        # print(key_layer)
        #timing.append(t1.elapsed())
        #print("Key-Transform elapsed: %s" % (time.clock() - start))
        #t1.record()
        value_layer = self.transpose_for_scores(mixed_value_layer)
        #print(value_layer)
        #timing.append(t1.elapsed())
        #print("Value-Transform elapsed: %s" % (time.clock() - start))

        # Take the dot product between "query" and "key" to get the raw attention scores.
        #t1.record()
        #print(query_layer.shape)
        #print(key_layer.shape)
        attention_scores = torch.matmul(query_layer, key_layer)
        #print(attention_scores.shape)
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        #print("Pytorch: ", attention_scores)
        #timing.append(t1.elapsed())
        #print("Attention-Score elapsed: %s" % (time.clock() - start))
        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
        #t1.record()

        # context_layer = self.softmax(query_layer, key_layer, value_layer, attention_mask)
        #print("context shape is :", context_layer.shape)
        #print("Cuda-ext:, ", attention_scores1)
        # Normalize the attention scores to probabilities.
        ####attention_probs = self.softmax(attention_scores)
        #timing.append(t1.elapsed())
        #print("Softmax elapsed: %s" % (time.clock() - start))
        #t1 = GPUTimer()
        #t1.record()
        attention_scores = attention_scores + attention_mask
        attention_probs = self.softmax(attention_scores)
        #attention_scores = self.softmax(attention_scores, attention_mask)
        #print("Softmax elapse {0:8.2f} ms", t1.elapsed() * 1000)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        #t1.record()
        context_layer = torch.matmul(attention_probs, value_layer)
        #timing.append(t1.elapsed())
        #print("Context elapsed: %s" % (time.clock() - start))
        #t1.record()
        #context_layer1 = context_layer.permute(
        #                0, 1, 3, 2, 4).contiguous()
        #if grads is not None:
        # context_layer.register_hook(lambda x, self = self : grads.append([x, "Context"]))
        context_layer1 = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer1.size()[:-2] + (self.all_head_size, )
        context_layer1 = context_layer1.view(*new_context_layer_shape)
        #timing.append(t1.elapsed())
        #print("Context-Transform elapsed: %s" % (time.clock() - start))

        if grads is not None:
            query_layer.register_hook(lambda x, self=self: grads.append([x, "Query"]))
            key_layer.register_hook(lambda x, self=self: grads.append([x, "Key"]))
            value_layer.register_hook(lambda x, self=self: grads.append([x, "Value"]))

        return context_layer1


class BertSelfOutput(nn.Module):
aiss's avatar
aiss committed
548

aiss's avatar
aiss committed
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
    def __init__(self, config, weights, biases):
        super(BertSelfOutput, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dense.weight = weights[3]
        self.dense.bias = biases[3]
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        #timing = []
        #t1 = GPUTimer()
        #t1.record()
        hidden_states = self.dense(hidden_states)
        #timing.append(t1.elapsed())
        #print("Attention Output elapsed: %s" % (time.clock() - start))
        hidden_states = self.dropout(hidden_states)
        #t1.record()
        #hidden_states = self.LayerNorm(hidden_states + input_tensor)
        #timing.append(t1.elapsed())
        #print("LayerNorm elapsed: %s" % (time.clock() - start))
        return hidden_states

    def get_w(self):
        return self.dense.weight


class BertAttention(nn.Module):
aiss's avatar
aiss committed
576

aiss's avatar
aiss committed
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
    def __init__(self, i, config, weights, biases):
        super(BertAttention, self).__init__()
        self.self = BertSelfAttention(i, config, weights, biases)
        self.output = BertSelfOutput(config, weights, biases)

    def forward(self, input_tensor, attention_mask):
        self_output = self.self(input_tensor, attention_mask)
        attention_output = self.output(self_output, input_tensor)
        return attention_output

    def get_w(self):
        return self.output.get_w()


class BertIntermediate(nn.Module):
aiss's avatar
aiss committed
592

aiss's avatar
aiss committed
593
594
595
596
597
598
599
600
601
602
603
604
605
606
    def __init__(self, config, weights, biases):
        super(BertIntermediate, self).__init__()
        self.dense_act = LinearActivation(config.hidden_size,
                                          config.intermediate_size,
                                          weights,
                                          biases,
                                          act=config.hidden_act)

    def forward(self, hidden_states):
        hidden_states = self.dense_act(hidden_states)
        return hidden_states


class BertOutput(nn.Module):
aiss's avatar
aiss committed
607

aiss's avatar
aiss committed
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
    def __init__(self, config, weights, biases):
        super(BertOutput, self).__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.dense.weight = weights[6]
        self.dense.bias = biases[6]
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        #timing = []
        #t1 = GPUTimer()
        #t1.record()
        #print (hidden_states)
        #print (self.dense.weight)
        hidden_states = self.dense(hidden_states)
        #timing.append(t1.elapsed())
        #print("FF2 elapsed: %s" % (time.clock() - start))
        hidden_states = self.dropout(hidden_states)
        #t1.record()
        #hidden_states = self.LayerNorm(hidden_states + input_tensor)
        #timing.append(t1.elapsed())
        #print("LayerNorm elapsed: %s" % (time.clock() - start))
        return hidden_states


class BertLayer(nn.Module):
aiss's avatar
aiss committed
634

aiss's avatar
aiss committed
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
    def __init__(self, i, config, weights, biases):
        super(BertLayer, self).__init__()
        self.attention = BertAttention(i, config, weights, biases)
        self.PreAttentionLayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
        self.PostAttentionLayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
        self.intermediate = BertIntermediate(config, weights, biases)
        self.output = BertOutput(config, weights, biases)
        self.weight = weights
        self.biases = biases

    def forward(self, hidden_states, attention_mask, grads, collect_all_grads=False):
        input_layer_norm = self.PreAttentionLayerNorm(hidden_states)
        attention_output = self.attention(input_layer_norm, attention_mask)
        #print ("hidden shape is :", hidden_states.shape)
        intermediate_input = hidden_states + attention_output

        intermediate_layer_norm = self.PostAttentionLayerNorm(intermediate_input)
        intermediate_output = self.intermediate(intermediate_layer_norm)
        layer_output = self.output(intermediate_output, attention_output)

        #attention_output = self.attention(hidden_states, attention_mask)
        #intermediate_output = self.intermediate(attention_output)
        #layer_output = self.output(intermediate_output, attention_output)

        if collect_all_grads:
            # self.weight[0].register_hook(lambda x, self=self: grads.append([x,"Q_W"]))
            # self.biases[0].register_hook(lambda x, self=self: grads.append([x,"Q_B"]))
            # self.weight[1].register_hook(lambda x, self=self: grads.append([x,"K_W"]))
            # self.biases[1].register_hook(lambda x, self=self: grads.append([x,"K_B"]))
            self.weight[2].register_hook(lambda x, self=self: grads.append([x, "V_W"]))
            self.biases[2].register_hook(lambda x, self=self: grads.append([x, "V_B"]))
            self.weight[3].register_hook(lambda x, self=self: grads.append([x, "O_W"]))
            self.biases[3].register_hook(lambda x, self=self: grads.append([x, "O_B"]))
aiss's avatar
aiss committed
668
669
            self.PostAttentionLayerNorm.weight.register_hook(lambda x, self=self: grads.append([x, "N2_W"]))
            self.PostAttentionLayerNorm.bias.register_hook(lambda x, self=self: grads.append([x, "N2_B"]))
aiss's avatar
aiss committed
670
671
672
673
            self.weight[5].register_hook(lambda x, self=self: grads.append([x, "int_W"]))
            self.biases[5].register_hook(lambda x, self=self: grads.append([x, "int_B"]))
            self.weight[6].register_hook(lambda x, self=self: grads.append([x, "out_W"]))
            self.biases[6].register_hook(lambda x, self=self: grads.append([x, "out_B"]))
aiss's avatar
aiss committed
674
675
            self.PreAttentionLayerNorm.weight.register_hook(lambda x, self=self: grads.append([x, "norm_W"]))
            self.PreAttentionLayerNorm.bias.register_hook(lambda x, self=self: grads.append([x, "norm_B"]))
aiss's avatar
aiss committed
676
677
678
679
680
681
682
683

        return layer_output + intermediate_input

    def get_w(self):
        return self.attention.get_w()


class BertEncoder(nn.Module):
aiss's avatar
aiss committed
684

aiss's avatar
aiss committed
685
686
687
688
689
    def __init__(self, config, weights, biases):
        super(BertEncoder, self).__init__()
        #layer = BertLayer(config, weights, biases)
        self.FinalLayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)

aiss's avatar
aiss committed
690
691
        self.layer = nn.ModuleList(
            [copy.deepcopy(BertLayer(i, config, weights, biases)) for i in range(config.num_hidden_layers)])
aiss's avatar
aiss committed
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
        self.grads = []
        self.graph = []

    def get_grads(self):
        return self.grads

    # def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True):
    #     all_encoder_layers = []
    #     for layer_module in self.layer:
    #         hidden_states = layer_module(hidden_states, attention_mask)
    #         if output_all_encoded_layers:
    #             all_encoder_layers.append(hidden_states)
    #     if not output_all_encoded_layers:
    #         all_encoder_layers.append(hidden_states)
    #     return all_encoder_layers

    def get_modules(self, big_node, input):
        for mdl in big_node.named_children():
aiss's avatar
aiss committed
710
711
            self.graph.append(mdl)
            self.get_modules(self, mdl, input)
aiss's avatar
aiss committed
712

aiss's avatar
aiss committed
713
    def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True, checkpoint_activations=False):
aiss's avatar
aiss committed
714
715
716
        all_encoder_layers = []

        def custom(start, end):
aiss's avatar
aiss committed
717

aiss's avatar
aiss committed
718
719
720
721
722
723
724
725
726
727
728
729
730
731
            def custom_forward(*inputs):
                layers = self.layer[start:end]
                x_ = inputs[0]
                for layer in layers:
                    x_ = layer(x_, inputs[1])
                return x_

            return custom_forward

        if checkpoint_activations:
            l = 0
            num_layers = len(self.layer)
            chunk_length = math.ceil(math.sqrt(num_layers))
            while l < num_layers:
aiss's avatar
aiss committed
732
                hidden_states = checkpoint.checkpoint(custom(l, l + chunk_length), hidden_states, attention_mask * 1)
aiss's avatar
aiss committed
733
734
735
736
                l += chunk_length
            # decoder layers
        else:
            for i, layer_module in enumerate(self.layer):
aiss's avatar
aiss committed
737
738
                hidden_states = layer_module(hidden_states, attention_mask, self.grads, collect_all_grads=True)
                hidden_states.register_hook(lambda x, i=i, self=self: self.grads.append([x, "hidden_state"]))
aiss's avatar
aiss committed
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
                #print("pytorch weight is: ", layer_module.get_w())

                if output_all_encoded_layers:
                    all_encoder_layers.append((hidden_states))

        if not output_all_encoded_layers or checkpoint_activations:
            hidden_states = self.FinalLayerNorm(hidden_states)
            all_encoder_layers.append((hidden_states))
        return all_encoder_layers


#class BertEncoder(nn.Module):
#    def __init__(self, config):
#        super(BertEncoder, self).__init__()
#        layer = BertLayer(config)
#        self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
#
#    def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True):
#        all_encoder_layers = []
#        for layer_module in self.layer:
#            hidden_states = layer_module(hidden_states, attention_mask)
#            if output_all_encoded_layers:
#                all_encoder_layers.append(hidden_states)
#        if not output_all_encoded_layers:
#            all_encoder_layers.append(hidden_states)
#        return all_encoder_layers


class BertPooler(nn.Module):
aiss's avatar
aiss committed
768

aiss's avatar
aiss committed
769
770
    def __init__(self, config):
        super(BertPooler, self).__init__()
aiss's avatar
aiss committed
771
        self.dense_act = LinearActivation(config.hidden_size, config.hidden_size, act="tanh")
aiss's avatar
aiss committed
772
773
774
775
776
777
778
779
780
781

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense_act(first_token_tensor)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):
aiss's avatar
aiss committed
782

aiss's avatar
aiss committed
783
784
    def __init__(self, config):
        super(BertPredictionHeadTransform, self).__init__()
aiss's avatar
aiss committed
785
        self.dense_act = LinearActivation(config.hidden_size, config.hidden_size, act=config.hidden_act)
aiss's avatar
aiss committed
786
787
788
789
790
791
792
793
794
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)

    def forward(self, hidden_states):
        hidden_states = self.dense_act(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class BertLMPredictionHead(nn.Module):
aiss's avatar
aiss committed
795

aiss's avatar
aiss committed
796
797
798
799
800
801
802
803
804
805
806
807
808
809
    def __init__(self, config, bert_model_embedding_weights):
        super(BertLMPredictionHead, self).__init__()
        self.transform = BertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = nn.Linear(bert_model_embedding_weights.size(1),
                                 bert_model_embedding_weights.size(0),
                                 bias=False)
        self.decoder.weight = bert_model_embedding_weights
        self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0)))

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
aiss's avatar
aiss committed
810
811
        get_accelerator().range_push("decoder input.size() = {}, weight.size() = {}".format(
            hidden_states.size(), self.decoder.weight.size()))
aiss's avatar
aiss committed
812
        hidden_states = self.decoder(hidden_states) + self.bias
aiss's avatar
aiss committed
813
        get_accelerator().range_pop()
aiss's avatar
aiss committed
814
815
816
817
        return hidden_states


class BertOnlyMLMHead(nn.Module):
aiss's avatar
aiss committed
818

aiss's avatar
aiss committed
819
820
821
822
823
824
825
826
827
828
    def __init__(self, config, bert_model_embedding_weights):
        super(BertOnlyMLMHead, self).__init__()
        self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class BertOnlyNSPHead(nn.Module):
aiss's avatar
aiss committed
829

aiss's avatar
aiss committed
830
831
832
833
834
835
836
837
838
839
    def __init__(self, config):
        super(BertOnlyNSPHead, self).__init__()
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, pooled_output):
        seq_relationship_score = self.seq_relationship(pooled_output)
        return seq_relationship_score


class BertPreTrainingHeads(nn.Module):
aiss's avatar
aiss committed
840

aiss's avatar
aiss committed
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
    def __init__(self, config, bert_model_embedding_weights):
        super(BertPreTrainingHeads, self).__init__()
        self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, sequence_output, pooled_output):
        prediction_scores = self.predictions(sequence_output)
        seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


class BertPreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for downloading and loading pretrained models.
    """
aiss's avatar
aiss committed
856

aiss's avatar
aiss committed
857
858
859
    def __init__(self, config, *inputs, **kwargs):
        super(BertPreTrainedModel, self).__init__()
        if not isinstance(config, BertConfig):
aiss's avatar
aiss committed
860
861
862
863
            raise ValueError("Parameter config in `{}(config)` should be an instance of class `BertConfig`. "
                             "To create a model from a Google pretrained model use "
                             "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                                 self.__class__.__name__, self.__class__.__name__))
aiss's avatar
aiss committed
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
        self.config = config

    def init_bert_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, BertLayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()

    @classmethod
    def from_pretrained(cls,
                        pretrained_model_name_or_path,
                        state_dict=None,
                        cache_dir=None,
                        from_tf=False,
                        *inputs,
                        **kwargs):
        """
        Instantiate a BertPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
            pretrained_model_name_or_path: either:
                - a str with the name of a pre-trained model to load selected in the list of:
                    . `bert-base-uncased`
                    . `bert-large-uncased`
                    . `bert-base-cased`
                    . `bert-large-cased`
                    . `bert-base-multilingual-uncased`
                    . `bert-base-multilingual-cased`
                    . `bert-base-chinese`
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . `model.chkpt` a TensorFlow checkpoint
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionary (collections.OrderedDict object) to use instead of Google pre-trained models
            *inputs, **kwargs: additional input for the specific Bert class
                (ex: num_labels for BertForSequenceClassification)
        """
        if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
            archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
        else:
            archive_file = pretrained_model_name_or_path
aiss's avatar
aiss committed
917
        if resolved_archive_file == archive_file:  # noqa: F821
aiss's avatar
aiss committed
918
919
            logger.info("loading archive file {}".format(archive_file))
        else:
aiss's avatar
aiss committed
920
921
            logger.info("loading archive file {} from cache at {}".format(archive_file,
                                                                          resolved_archive_file))  # noqa: F821
aiss's avatar
aiss committed
922
        tempdir = None
aiss's avatar
aiss committed
923
924
        if os.path.isdir(resolved_archive_file) or from_tf:  # noqa: F821
            serialization_dir = resolved_archive_file  # noqa: F821
aiss's avatar
aiss committed
925
926
927
928
        else:
            # Extract archive to temp dir
            tempdir = tempfile.mkdtemp()
            logger.info("extracting archive file {} to temp dir {}".format(
aiss's avatar
aiss committed
929
                resolved_archive_file,  # noqa: F821
aiss's avatar
aiss committed
930
                tempdir))
aiss's avatar
aiss committed
931
            with tarfile.open(resolved_archive_file, 'r:gz') as archive:  # noqa: F821
aiss's avatar
aiss committed
932
933
934
935
936
937
938
939
940
941
                archive.extractall(tempdir)
            serialization_dir = tempdir
        # Load config
        config_file = os.path.join(serialization_dir, CONFIG_NAME)
        config = BertConfig.from_json_file(config_file)
        logger.info("Model config {}".format(config))
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
        if state_dict is None and not from_tf:
            weights_path = os.path.join(serialization_dir, WEIGHTS_NAME)
aiss's avatar
aiss committed
942
            state_dict = torch.load(weights_path, map_location='cpu' if not get_accelerator().is_available() else None)
aiss's avatar
aiss committed
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
        if tempdir:
            # Clean up temp dir
            shutil.rmtree(tempdir)
        if from_tf:
            # Directly load from a TensorFlow checkpoint
            weights_path = os.path.join(serialization_dir, TF_WEIGHTS_NAME)
            return load_tf_weights_in_bert(model, weights_path)
        # Load from a PyTorch state_dict
        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
            if 'gamma' in key:
                new_key = key.replace('gamma', 'weight')
            if 'beta' in key:
                new_key = key.replace('beta', 'bias')
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
        metadata = getattr(state_dict, '_metadata', None)
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

        def load(module, prefix=''):
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
aiss's avatar
aiss committed
976
            module._load_from_state_dict(state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys,
aiss's avatar
aiss committed
977
978
979
980
981
982
                                         error_msgs)
            for name, child in module._modules.items():
                if child is not None:
                    load(child, prefix + name + '.')

        start_prefix = ''
aiss's avatar
aiss committed
983
        if not hasattr(model, 'bert') and any(s.startswith('bert.') for s in state_dict.keys()):
aiss's avatar
aiss committed
984
985
986
987
            start_prefix = 'bert.'
        load(model, prefix=start_prefix)
        if len(missing_keys) > 0:
            logger.info("Weights of {} not initialized from pretrained model: {}".format(
aiss's avatar
aiss committed
988
                model.__class__.__name__, missing_keys))
aiss's avatar
aiss committed
989
        if len(unexpected_keys) > 0:
aiss's avatar
aiss committed
990
991
            logger.info("Weights from pretrained model not used in {}: {}".format(model.__class__.__name__,
                                                                                  unexpected_keys))
aiss's avatar
aiss committed
992
993
        if len(error_msgs) > 0:
            raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
aiss's avatar
aiss committed
994
                model.__class__.__name__, "\n\t".join(error_msgs)))
aiss's avatar
aiss committed
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
        return model


class BertModel(BertPreTrainedModel):
    """BERT model ("Bidirectional Embedding Representations from a Transformer").

    Params:
        config: a BertConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.

    Outputs: Tuple of (encoded_layers, pooled_output)
        `encoded_layers`: controlled by `output_all_encoded_layers` argument:
            - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
                of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
                encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
            - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
                to the last attention block of shape [batch_size, sequence_length, hidden_size],
        `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
            classifier pretrained on top of the hidden state associated to the first character of the
            input (`CLS`) to train on the Next-Sentence task (see BERT's paper).

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    model = modeling.BertModel(config=config)
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
    ```
    """
aiss's avatar
aiss committed
1042

aiss's avatar
aiss committed
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
    def __init__(self, config):
        super(BertModel, self).__init__(config)
        self.embeddings = BertEmbeddings(config)
        self.encoder = BertEncoder(config)
        self.pooler = BertPooler(config)
        self.apply(self.init_bert_weights)

    def forward(self,
                input_ids,
                token_type_ids=None,
                attention_mask=None,
                output_all_encoded_layers=True,
                checkpoint_activations=False):
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
aiss's avatar
aiss committed
1073
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype)  # fp16 compatibility
aiss's avatar
aiss committed
1074
1075
1076
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

        embedding_output = self.embeddings(input_ids, token_type_ids)
aiss's avatar
aiss committed
1077
1078
1079
1080
        encoded_layers = self.encoder(embedding_output,
                                      extended_attention_mask,
                                      output_all_encoded_layers=output_all_encoded_layers,
                                      checkpoint_activations=checkpoint_activations)
aiss's avatar
aiss committed
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
        sequence_output = encoded_layers[-1]
        pooled_output = self.pooler(sequence_output)
        if not output_all_encoded_layers:
            encoded_layers = encoded_layers[-1]
        return encoded_layers, pooled_output


class BertForPreTraining(BertPreTrainedModel):
    """BERT model with pre-training heads.
    This module comprises the BERT model followed by the two pre-training heads:
        - the masked language modeling head, and
        - the next sentence classification head.

    Params:
        config: a BertConfig class instance with the configuration to build a new model.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `masked_lm_labels`: optional masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]
        `next_sentence_label`: optional next sentence classification loss: torch.LongTensor of shape [batch_size]
            with indices selected in [0, 1].
            0 => next sentence is the continuation, 1 => next sentence is a random sentence.

    Outputs:
        if `masked_lm_labels` and `next_sentence_label` are not `None`:
            Outputs the total_loss which is the sum of the masked language modeling loss and the next
            sentence classification loss.
        if `masked_lm_labels` or `next_sentence_label` is `None`:
            Outputs a tuple comprising
            - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
            - the next sentence classification logits of shape [batch_size, 2].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    model = BertForPreTraining(config)
    masked_lm_logits_scores, seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
aiss's avatar
aiss committed
1138

aiss's avatar
aiss committed
1139
1140
1141
1142
1143
1144
1145
1146
    def __init__(self, config, args):
        super(BertForPreTraining, self).__init__(config)
        self.summary_writer = None
        if dist.get_rank() == 0:
            self.summary_writer = args.summary_writer
        self.samples_per_step = dist.get_world_size() * args.train_batch_size
        self.sample_count = self.samples_per_step
        self.bert = BertModel(config)
aiss's avatar
aiss committed
1147
        self.cls = BertPreTrainingHeads(config, self.bert.embeddings.word_embeddings.weight)
aiss's avatar
aiss committed
1148
1149
1150
1151
1152
1153
        self.apply(self.init_bert_weights)

    def log_summary_writer(self, logs: dict, base='Train'):
        if dist.get_rank() == 0:
            module_name = "Samples"  #self._batch_module_name.get(batch_type, self._get_batch_type_error(batch_type))
            for key, log in logs.items():
aiss's avatar
aiss committed
1154
                self.summary_writer.add_scalar(f'{base}/{module_name}/{key}', log, self.sample_count)
aiss's avatar
aiss committed
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
            self.sample_count += self.samples_per_step

    def forward(self, batch, log=True):
        #input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, next_sentence_label=None, checkpoint_activations=False):
        input_ids = batch[1]
        token_type_ids = batch[3]
        attention_mask = batch[2]
        masked_lm_labels = batch[5]
        next_sentence_label = batch[4]
        checkpoint_activations = False

aiss's avatar
aiss committed
1166
1167
1168
1169
1170
        sequence_output, pooled_output = self.bert(input_ids,
                                                   token_type_ids,
                                                   attention_mask,
                                                   output_all_encoded_layers=False,
                                                   checkpoint_activations=checkpoint_activations)
aiss's avatar
aiss committed
1171
1172
1173
1174
        prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)

        if masked_lm_labels is not None and next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
aiss's avatar
aiss committed
1175
1176
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
aiss's avatar
aiss committed
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
            #print("loss is {} {}".format(masked_lm_loss, next_sentence_loss))
            total_loss = masked_lm_loss + next_sentence_loss
            #            if log:
            #                self.log_summary_writer(logs={'train_loss': total_loss.item()})
            return total_loss
        else:
            return prediction_scores, seq_relationship_score


class BertForMaskedLM(BertPreTrainedModel):
    """BERT model with the masked language modeling head.
    This module comprises the BERT model followed by the masked language modeling head.

    Params:
        config: a BertConfig class instance with the configuration to build a new model.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]

    Outputs:
        if `masked_lm_labels` is  not `None`:
            Outputs the masked language modeling loss.
        if `masked_lm_labels` is `None`:
            Outputs the masked language modeling logits of shape [batch_size, sequence_length, vocab_size].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    model = BertForMaskedLM(config)
    masked_lm_logits_scores = model(input_ids, token_type_ids, input_mask)
    ```
    """
aiss's avatar
aiss committed
1228

aiss's avatar
aiss committed
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
    def __init__(self, config):
        super(BertForMaskedLM, self).__init__(config)
        self.bert = BertModel(config)
        self.cls = BertOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight)
        self.apply(self.init_bert_weights)

    def forward(self,
                input_ids,
                token_type_ids=None,
                attention_mask=None,
                masked_lm_labels=None,
                checkpoint_activations=False):
aiss's avatar
aiss committed
1241
        sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
aiss's avatar
aiss committed
1242
1243
1244
1245
        prediction_scores = self.cls(sequence_output)

        if masked_lm_labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
aiss's avatar
aiss committed
1246
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
aiss's avatar
aiss committed
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
            return masked_lm_loss
        else:
            return prediction_scores


class BertForNextSentencePrediction(BertPreTrainedModel):
    """BERT model with next sentence prediction head.
    This module comprises the BERT model followed by the next sentence classification head.

    Params:
        config: a BertConfig class instance with the configuration to build a new model.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size]
            with indices selected in [0, 1].
            0 => next sentence is the continuation, 1 => next sentence is a random sentence.

    Outputs:
        if `next_sentence_label` is not `None`:
            Outputs the total_loss which is the sum of the masked language modeling loss and the next
            sentence classification loss.
        if `next_sentence_label` is `None`:
            Outputs the next sentence classification logits of shape [batch_size, 2].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    model = BertForNextSentencePrediction(config)
    seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
aiss's avatar
aiss committed
1295

aiss's avatar
aiss committed
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
    def __init__(self, config):
        super(BertForNextSentencePrediction, self).__init__(config)
        self.bert = BertModel(config)
        self.cls = BertOnlyNSPHead(config)
        self.apply(self.init_bert_weights)

    def forward(self,
                input_ids,
                token_type_ids=None,
                attention_mask=None,
                next_sentence_label=None,
                checkpoint_activations=False):
aiss's avatar
aiss committed
1308
        _, pooled_output = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
aiss's avatar
aiss committed
1309
1310
1311
1312
        seq_relationship_score = self.cls(pooled_output)

        if next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
aiss's avatar
aiss committed
1313
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
aiss's avatar
aiss committed
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
            return next_sentence_loss
        else:
            return seq_relationship_score


class BertForSequenceClassification(BertPreTrainedModel):
    """BERT model for classification.
    This module is composed of the BERT model with a linear layer on top of
    the pooled output.

    Params:
        `config`: a BertConfig class instance with the configuration to build a new model.
        `num_labels`: the number of classes for the classifier. Default = 2.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_labels].

    Outputs:
        if `labels` is not `None`:
            Outputs the CrossEntropy classification loss of the output with the labels.
        if `labels` is `None`:
            Outputs the classification logits of shape [batch_size, num_labels].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    num_labels = 2

    model = BertForSequenceClassification(config, num_labels)
    logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
aiss's avatar
aiss committed
1364

aiss's avatar
aiss committed
1365
1366
1367
1368
1369
1370
1371
1372
    def __init__(self, config, num_labels):
        super(BertForSequenceClassification, self).__init__(config)
        self.num_labels = num_labels
        self.bert = BertModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, num_labels)
        self.apply(self.init_bert_weights)

aiss's avatar
aiss committed
1373
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, checkpoint_activations=False):
aiss's avatar
aiss committed
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
        _, pooled_output = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            return loss
        else:
            return logits


class BertForMultipleChoice(BertPreTrainedModel):
    """BERT model for multiple choice tasks.
    This module is composed of the BERT model with a linear layer on top of
    the pooled output.

    Params:
        `config`: a BertConfig class instance with the configuration to build a new model.
        `num_choices`: the number of classes for the classifier. Default = 2.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A`
            and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].

    Outputs:
        if `labels` is not `None`:
            Outputs the CrossEntropy classification loss of the output with the labels.
        if `labels` is `None`:
            Outputs the classification logits of shape [batch_size, num_labels].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
    input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
    token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    num_choices = 2

    model = BertForMultipleChoice(config, num_choices)
    logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
aiss's avatar
aiss committed
1430

aiss's avatar
aiss committed
1431
1432
1433
1434
1435
1436
1437
1438
    def __init__(self, config, num_choices):
        super(BertForMultipleChoice, self).__init__(config)
        self.num_choices = num_choices
        self.bert = BertModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)
        self.apply(self.init_bert_weights)

aiss's avatar
aiss committed
1439
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, checkpoint_activations=False):
aiss's avatar
aiss committed
1440
1441
1442
        flat_input_ids = input_ids.view(-1, input_ids.size(-1))
        flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
        flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1))
aiss's avatar
aiss committed
1443
1444
1445
1446
        _, pooled_output = self.bert(flat_input_ids,
                                     flat_token_type_ids,
                                     flat_attention_mask,
                                     output_all_encoded_layers=False)
aiss's avatar
aiss committed
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, self.num_choices)

        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)
            return loss
        else:
            return reshaped_logits


class BertForTokenClassification(BertPreTrainedModel):
    """BERT model for token-level classification.
    This module is composed of the BERT model with a linear layer on top of
    the full hidden state of the last layer.

    Params:
        `config`: a BertConfig class instance with the configuration to build a new model.
        `num_labels`: the number of classes for the classifier. Default = 2.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `labels`: labels for the classification output: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [0, ..., num_labels].

    Outputs:
        if `labels` is not `None`:
            Outputs the CrossEntropy classification loss of the output with the labels.
        if `labels` is `None`:
            Outputs the classification logits of shape [batch_size, sequence_length, num_labels].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    num_labels = 2

    model = BertForTokenClassification(config, num_labels)
    logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
aiss's avatar
aiss committed
1504

aiss's avatar
aiss committed
1505
1506
1507
1508
1509
1510
1511
1512
    def __init__(self, config, num_labels):
        super(BertForTokenClassification, self).__init__(config)
        self.num_labels = num_labels
        self.bert = BertModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, num_labels)
        self.apply(self.init_bert_weights)

aiss's avatar
aiss committed
1513
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, checkpoint_activations=False):
aiss's avatar
aiss committed
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
        sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

        if labels is not None:
            loss_fct = CrossEntropyLoss()
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.num_labels)[active_loss]
                active_labels = labels.view(-1)[active_loss]
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            return loss
        else:
            return logits


class BertForQuestionAnswering(BertPreTrainedModel):
    """BERT model for Question Answering (span extraction).
    This module is composed of the BERT model with a linear layer on top of
    the sequence output that computes start_logits and end_logits

    Params:
        `config`: a BertConfig class instance with the configuration to build a new model.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.
        `end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.

    Outputs:
        if `start_positions` and `end_positions` are not `None`:
            Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions.
        if `start_positions` or `end_positions` is `None`:
            Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end
            position tokens of shape [batch_size, sequence_length].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    model = BertForQuestionAnswering(config)
    start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
aiss's avatar
aiss committed
1580

aiss's avatar
aiss committed
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
    def __init__(self, config):
        super(BertForQuestionAnswering, self).__init__(config)
        self.bert = BertModel(config)
        # TODO check with Google if it's normal there is no dropout on the token classifier of SQuAD in the TF version
        # self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.qa_outputs = nn.Linear(config.hidden_size, 2)
        self.apply(self.init_bert_weights)

    def forward(self,
                input_ids,
                token_type_ids=None,
                attention_mask=None,
                start_positions=None,
                end_positions=None,
                checkpoint_activations=False):
        sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
            return total_loss
        else:
            return start_logits, end_logits