test_pipeline.py 4.11 KB
Newer Older
aiss's avatar
aiss committed
1
2
3
4
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team
aiss's avatar
aiss committed
5
6
7
8
9

from deepspeed.runtime.checkpoint_engine.torch_checkpoint_engine import TorchCheckpointEngine
from unit.common import DistributedTest
from unit.simple_model import *
from unit.checkpoint.common import checkpoint_correctness_verification
aiss's avatar
aiss committed
10
from unit.util import skip_on_arch
aiss's avatar
aiss committed
11
12
13
14
15
16
17
18
19

import pytest


class TestPipelineCheckpoint(DistributedTest):
    world_size = 4

    @pytest.mark.parametrize("zero_stage", [0, 1])
    def test_checkpoint_pipe_engine(self, zero_stage, tmpdir):
aiss's avatar
aiss committed
20
21
        skip_on_arch(min_arch=7)

aiss's avatar
aiss committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        config_dict = {
            "train_batch_size": 2,
            "train_micro_batch_size_per_gpu": 1,
            "steps_per_print": 1,
            "optimizer": {
                "type": "Adam",
                "params": {
                    "lr": 1e-5
                }
            },
            "zero_optimization": {
                "stage": zero_stage
            },
            "fp16": {
                "enabled": zero_stage > 0
            },
            "scheduler": {
                "type": "OneCycle",
                "params": {
                    "cycle_first_step_size": 1000,
                    "cycle_first_stair_count": 500,
                    "cycle_second_step_size": 1000,
                    "cycle_second_stair_count": 500,
                    "decay_step_size": 1000,
                    "cycle_min_lr": 0.0001,
                    "cycle_max_lr": 0.0010,
                    "decay_lr_rate": 0.001,
                    "cycle_min_mom": 0.85,
                    "cycle_max_mom": 0.99,
                    "decay_mom_rate": 0.0
                }
            }
        }

        models = [LinearStackPipe(num_stages=2) for _ in range(2)]
        checkpoint_correctness_verification(config_dict=config_dict,
                                            models=models,
                                            hidden_dim=models[0].hidden_dim,
                                            tmpdir=tmpdir,
                                            fp16=config_dict['fp16']['enabled'],
                                            load_optimizer_states=True,
                                            load_lr_scheduler_states=True,
                                            train_batch=True)

    @pytest.mark.parametrize(
        "base_topo,test_topo",
        [
            #(PipeTopo(num_pp=1,
            #          num_dp=4),
            # PipeTopo(num_pp=4,
            #          num_dp=1)),
            #(PipeTopo(num_pp=2,
            #          num_dp=2),
            # PipeTopo(num_pp=2,
            #          num_dp=2)),
            #(PipeTopo(num_pp=4,
            #          num_dp=1),
            # PipeTopo(num_pp=2,
            #          num_dp=2)),
        ])
    def test_checkpoint_pipe_module(self, base_topo, test_topo, tmpdir):
        checkpoint_engine = TorchCheckpointEngine()
        base_model = LinearStackPipe(topology=base_topo)
        base_model.save_state_dict(tmpdir, checkpoint_engine=checkpoint_engine)

        dist.barrier()

        test_model = LinearStackPipe(topology=test_topo)
        test_model.load_state_dir(tmpdir, checkpoint_engine=checkpoint_engine)

        # Base and test can have different lengths, so make sure we map from the
        # smaller to larger model
        if len(base_model.forward_funcs) < len(test_model.forward_funcs):
            A = base_model
            B = test_model
        else:
            A = test_model
            B = base_model

        # Compare layers individually since partitions are different
        for idx, A_layer in enumerate(A.forward_funcs):
            if not hasattr(A_layer, 'parameters'):
                # Skip functionals, etc.
                continue

            # Find the corresponding layer in B
            global_idx = idx + A._local_start
            B_local_idx = global_idx - B._local_start
            B_layer = B.forward_funcs[B_local_idx]

            # Compare layer parameters
            for p0, p1 in zip(A_layer.parameters(), B_layer.parameters()):
                assert torch.allclose(p0, p1, atol=1e-07), f"Model state {p0} is not equal to {p1}"