"vscode:/vscode.git/clone" did not exist on "bbeabe459970463c1db4c8f33e19c30e84d8487a"
test_model.py 3.44 KB
Newer Older
aiss's avatar
aiss committed
1
2
3
4
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team
aiss's avatar
aiss committed
5

Jeff Rasley's avatar
Jeff Rasley committed
6
7
8
9
10
11
import os
import json
import argparse
import torch
import deepspeed
from torch.utils.data.distributed import DistributedSampler
aiss's avatar
aiss committed
12
import deepspeed.comm as dist
Jeff Rasley's avatar
Jeff Rasley committed
13
14
15


class SimpleModel(torch.nn.Module):
aiss's avatar
aiss committed
16

Jeff Rasley's avatar
Jeff Rasley committed
17
18
19
20
21
22
23
24
    def __init__(self, hidden_dim, empty_grad=False):
        super(SimpleModel, self).__init__()
        self.linear = torch.nn.Linear(hidden_dim, hidden_dim)
        if empty_grad:
            self.layers2 = torch.nn.ModuleList([torch.nn.Linear(hidden_dim, hidden_dim)])
        self.cross_entropy_loss = torch.nn.CrossEntropyLoss()

    def forward(self, x, y):
aiss's avatar
aiss committed
25
26
27
        hidden = x
        hidden = self.linear(hidden)
        return self.cross_entropy_loss(hidden, y)
Jeff Rasley's avatar
Jeff Rasley committed
28
29
30
31
32
33
34
35
36
37
38
39


def create_config_from_dict(tmpdir, config_dict):
    config_path = os.path.join(tmpdir, 'temp_config.json')
    with open(config_path, 'w') as fd:
        json.dump(config_dict, fd)
    return config_path


def get_data_loader(model, total_samples, hidden_dim, device):
    batch_size = model.train_micro_batch_size_per_gpu()
    train_data = torch.randn(total_samples, hidden_dim, device=device, dtype=torch.half)
aiss's avatar
aiss committed
40
    train_label = torch.empty(total_samples, dtype=torch.long, device=device).random_(hidden_dim)
Jeff Rasley's avatar
Jeff Rasley committed
41
42
    train_dataset = torch.utils.data.TensorDataset(train_data, train_label)
    sampler = DistributedSampler(train_dataset)
aiss's avatar
aiss committed
43
    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, sampler=sampler)
Jeff Rasley's avatar
Jeff Rasley committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
    return train_loader


def get_args(tmpdir, config_dict):
    parser = argparse.ArgumentParser()
    parser.add_argument("--local_rank", type=int, default=0)
    parser.add_argument('--zero', type=int, default=0)
    args = parser.parse_args()  #args=''

    config_dict["zero_optimization"]["stage"] = args.zero
    print('config_dict["zero_optimization"]', config_dict["zero_optimization"])
    config_path = create_config_from_dict(tmpdir, config_dict)

    args.deepspeed_config = config_path
    return args


def print0(msg):
aiss's avatar
aiss committed
62
    if dist.get_rank() == 0:
Jeff Rasley's avatar
Jeff Rasley committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
        print(msg, flush=True)


rank = int(os.environ['RANK'])
print('seed:', 2222 + rank)
torch.random.manual_seed(2222 + rank)

config_dict = {
    "train_batch_size": 8,
    "steps_per_print": 1,
    "optimizer": {
        "type": "Adam",
        "params": {
            "lr": 0.00015,
        }
    },
    "fp16": {
        "enabled": True,
        "initial_scale_power": 15
    },
    "zero_optimization": {
        "stage": 0,
aiss's avatar
aiss committed
85
86
        "reduce_bucket_size": 20,
        "stage3_model_persistence_threshold": 10
Jeff Rasley's avatar
Jeff Rasley committed
87
88
89
90
    }
}
#        "initial_scale_power": 15
args = get_args('/tmp/', config_dict)
aiss's avatar
aiss committed
91
hidden_dim = 32
Jeff Rasley's avatar
Jeff Rasley committed
92
93
94

model = SimpleModel(hidden_dim, empty_grad=False)

aiss's avatar
aiss committed
95
96
97
98
model, _, _, _ = deepspeed.initialize(args=args,
                                      model=model,
                                      model_parameters=model.parameters(),
                                      dist_init_required=True)
Jeff Rasley's avatar
Jeff Rasley committed
99
100
101


def print_params(tag, model):
aiss's avatar
aiss committed
102
    if dist.get_rank() == 0:
Jeff Rasley's avatar
Jeff Rasley committed
103
104
105
106
        for n, p in model.named_parameters():
            print0("{} {}:{}".format(tag, n, p))


aiss's avatar
aiss committed
107
data_loader = get_data_loader(model=model, total_samples=1000, hidden_dim=hidden_dim, device=model.device)
Jeff Rasley's avatar
Jeff Rasley committed
108
109
110
#print_params('pre-train', model)
for n, batch in enumerate(data_loader):
    loss = model(batch[0], batch[1])
aiss's avatar
aiss committed
111
    if dist.get_rank() == 0:
Jeff Rasley's avatar
Jeff Rasley committed
112
113
114
115
116
        print("LOSS:", loss.item())
    model.backward(loss)
    model.step()
    #print_params('step={}'.format(n), model)
    if n == 5: break