general_kernels.cu 14.2 KB
Newer Older
aiss's avatar
aiss committed
1
2
3
4
// Copyright (c) Microsoft Corporation.
// SPDX-License-Identifier: Apache-2.0

// DeepSpeed Team
aiss's avatar
aiss committed
5

aiss's avatar
aiss committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
#include "general_kernels.h"

namespace cg = cooperative_groups;

template <typename T>
__global__ void column_sum_reduce(const T* __restrict__ inp,
                                  T* __restrict__ out,
                                  int rows,
                                  int width)
{
    __shared__ float tile[TILE_DIM][TILE_DIM + 1];

    cg::thread_block b = cg::this_thread_block();
    cg::thread_block_tile<TILE_DIM> g = cg::tiled_partition<TILE_DIM>(b);

    int idx = blockDim.x * blockIdx.x + threadIdx.x;

    int y_stride = width * TILE_DIM;

    float localSum = 0;

    // Loop across matrix height
    if (idx < width) {
        int offset = threadIdx.y * width + idx;
        for (int r = threadIdx.y; r < rows; r += TILE_DIM) {
            localSum += (float)inp[offset];
            offset += y_stride;
        }
    }

    tile[threadIdx.x][threadIdx.y] = localSum;

    __syncthreads();

    // Sum the shared buffer.
    float sum = tile[threadIdx.y][threadIdx.x];

#ifndef __STOCHASTIC_MODE__
    __syncthreads();
#endif

    for (int i = 1; i < TILE_DIM; i <<= 1) sum += g.shfl_down(sum, i);

    if (threadIdx.x == 0) {
        int pos = blockIdx.x * TILE_DIM + threadIdx.y;
        if (pos < width) out[pos] = sum;
    }
}

template <typename T>
void launch_fuse_transpose_bias_kernel(const T* inp,
                                       T* out,
                                       int rows,
                                       int cols,
                                       cudaStream_t stream);

template <>
void launch_fuse_transpose_bias_kernel<float>(const float* inp,
                                              float* out,
                                              int rows,
                                              int cols,
                                              cudaStream_t stream)
{
    // assert(rows % TILE_DIM == 0);
    // assert(cols % TILE_DIM == 0);

    dim3 grid_dim((cols - 1) / TILE_DIM + 1);
    dim3 block_dim(TILE_DIM, TILE_DIM);

    column_sum_reduce<float><<<grid_dim, block_dim, 0, stream>>>(inp, out, rows, cols);
}

template <>
void launch_fuse_transpose_bias_kernel<__half>(const __half* inp,
                                               __half* out,
                                               int rows,
                                               int cols,
                                               cudaStream_t stream)
{
    // assert(rows % TILE_DIM == 0);
    // assert(cols % TILE_DIM == 0);

    dim3 grid_dim((cols - 1) / TILE_DIM + 1);
    dim3 block_dim(TILE_DIM, TILE_DIM);

    column_sum_reduce<__half><<<grid_dim, block_dim, 0, stream>>>(inp, out, rows, cols);
}

__global__ void fused_add2_kernel(const int N, float* out, const float* inp1, const float* inp2)
{
    const float4* inp1_4 = reinterpret_cast<const float4*>(inp1);
    const float4* inp2_4 = reinterpret_cast<const float4*>(inp2);
    float4* out_4 = reinterpret_cast<float4*>(out);

    CUDA_1D_KERNEL_LOOP(j, N)
    {
        float4 val;
        float4 inp1_reg = inp1_4[j];
        float4 inp2_reg = inp2_4[j];

        val.x = inp1_reg.x + inp2_reg.x;
        val.y = inp1_reg.y + inp2_reg.y;
        val.z = inp1_reg.z + inp2_reg.z;
        val.w = inp1_reg.w + inp2_reg.w;

        out_4[j] = val;
    }
}

__global__ void fused_add2_kernel(const int N, __half* out, const __half* inp1, const __half* inp2)
{
    float2 inp1_4;
    float2 inp2_4;

    __half2* inp1_h = reinterpret_cast<__half2*>(&inp1_4);
    __half2* inp2_h = reinterpret_cast<__half2*>(&inp2_4);

    const float2* inp1_arr = reinterpret_cast<const float2*>(inp1);
    const float2* inp2_arr = reinterpret_cast<const float2*>(inp2);

    CUDA_1D_KERNEL_LOOP(j, N)
    {
        inp1_4 = inp1_arr[j];
        inp2_4 = inp2_arr[j];

        float2 inp1_h_f_0 = __half22float2(inp1_h[0]);
        float2 inp1_h_f_1 = __half22float2(inp1_h[1]);

        float2 inp2_h_f_0 = __half22float2(inp2_h[0]);
        float2 inp2_h_f_1 = __half22float2(inp2_h[1]);

        inp1_h_f_0.x += inp2_h_f_0.x;
        inp1_h_f_0.y += inp2_h_f_0.y;
        inp1_h_f_1.x += inp2_h_f_1.x;
        inp1_h_f_1.y += inp2_h_f_1.y;

        float2 val_f;
        __half2* val_h = reinterpret_cast<__half2*>(&val_f);

        val_h[0] = __float22half2_rn(inp1_h_f_0);
        val_h[1] = __float22half2_rn(inp1_h_f_1);

        float2* out_4 = reinterpret_cast<float2*>(out);
        out_4[j] = val_f;
    }
}

template <>
void launch_fused_add2<float>(float* out,
                              const float* inp1,
                              const float* inp2,
                              int batch_size,
                              int seq_length,
                              int hidden_dim,
                              cudaStream_t& stream)
{
    int total_count = batch_size * seq_length * hidden_dim / 4;
    dim3 grid_dim = DS_GET_BLOCKS(total_count);  //(batch_size * seq_length);

    dim3 block_dim = DS_CUDA_NUM_THREADS;  //(hidden_dim / 4);

    fused_add2_kernel<<<grid_dim, block_dim, 0, stream>>>(total_count, out, inp1, inp2);
}

template <>
void launch_fused_add2<__half>(__half* out,
                               const __half* inp1,
                               const __half* inp2,
                               int batch_size,
                               int seq_length,
                               int hidden_dim,
                               cudaStream_t& stream)
{
    int total_count = batch_size * seq_length * hidden_dim / 4;
    dim3 grid_dim = DS_GET_BLOCKS(total_count);  //(batch_size * seq_length);

    dim3 block_dim = DS_CUDA_NUM_THREADS;  //(hidden_dim / 4);

    fused_add2_kernel<<<grid_dim, block_dim, 0, stream>>>(total_count, out, inp1, inp2);
}

__global__ void fused_add3_kernel(float* out,
                                  const float* inp1,
                                  const float* inp2,
                                  const float* inp3,
                                  int size,
                                  int row_stride)
{
    int row = blockIdx.x;
    int id = threadIdx.x;

    const float4* inp1_4 = reinterpret_cast<const float4*>(inp1);
    const float4* inp2_4 = reinterpret_cast<const float4*>(inp2);
    const float4* inp3_4 = reinterpret_cast<const float4*>(inp3);

    float4* out_4 = reinterpret_cast<float4*>(out);

    float4 val;
    float4 inp1_reg = inp1_4[row * row_stride + id];
    float4 inp2_reg = inp2_4[row * row_stride + id];
    float4 inp3_reg = inp3_4[row * row_stride + id];

    val.x = inp1_reg.x + inp2_reg.x + inp3_reg.x;
    val.y = inp1_reg.y + inp2_reg.y + inp3_reg.y;
    val.z = inp1_reg.z + inp2_reg.z + inp3_reg.z;
    val.w = inp1_reg.w + inp2_reg.w + inp3_reg.w;

    out_4[row * row_stride + id] = val;
}

__global__ void fused_add3_kernel(__half* out,
                                  const __half* inp1,
                                  const __half* inp2,
                                  const __half* inp3,
                                  int size,
                                  int row_stride)
{
    int row = blockIdx.x;
    int id = threadIdx.x;
    const float2* inp1_arr = reinterpret_cast<const float2*>(inp1);
    const float2* inp2_arr = reinterpret_cast<const float2*>(inp2);
    const float2* inp3_arr = reinterpret_cast<const float2*>(inp3);

    float2 inp1_4 = inp1_arr[row * row_stride + id];
    float2 inp2_4 = inp2_arr[row * row_stride + id];
    float2 inp3_4 = inp3_arr[row * row_stride + id];

    __half2* inp1_h = reinterpret_cast<__half2*>(&inp1_4);
    __half2* inp2_h = reinterpret_cast<__half2*>(&inp2_4);
    __half2* inp3_h = reinterpret_cast<__half2*>(&inp3_4);

    float2 inp1_h_f_0 = __half22float2(inp1_h[0]);
    float2 inp1_h_f_1 = __half22float2(inp1_h[1]);

    float2 inp2_h_f_0 = __half22float2(inp2_h[0]);
    float2 inp2_h_f_1 = __half22float2(inp2_h[1]);

    float2 inp3_h_f_0 = __half22float2(inp3_h[0]);
    float2 inp3_h_f_1 = __half22float2(inp3_h[1]);

    inp1_h_f_0.x += (inp2_h_f_0.x + inp3_h_f_0.x);
    inp1_h_f_0.y += (inp2_h_f_0.y + inp3_h_f_0.y);
    inp1_h_f_1.x += (inp2_h_f_1.x + inp3_h_f_1.x);
    inp1_h_f_1.y += (inp2_h_f_1.y + inp3_h_f_1.y);

    float2 val_f;
    __half2* val_h = reinterpret_cast<__half2*>(&val_f);

    val_h[0] = __float22half2_rn(inp1_h_f_0);
    val_h[1] = __float22half2_rn(inp1_h_f_1);

    float2* out_4 = reinterpret_cast<float2*>(out);
    out_4[row * row_stride + id] = val_f;
}

template <>
void launch_fused_add3<float>(float* out,
                              const float* inp1,
                              const float* inp2,
                              const float* inp3,
                              int batch_size,
                              int seq_length,
                              int hidden_size,
                              cudaStream_t& stream)
{
    dim3 grid_dim(batch_size * seq_length);

    dim3 block_dim(hidden_size / 4);

    fused_add3_kernel<<<grid_dim, block_dim, 0, stream>>>(
        out, inp1, inp2, inp3, (batch_size * seq_length * hidden_size), hidden_size / 4);
}

template <>
void launch_fused_add3<__half>(__half* out,
                               const __half* inp1,
                               const __half* inp2,
                               const __half* inp3,
                               int batch_size,
                               int seq_length,
                               int hidden_size,
                               cudaStream_t& stream)
{
    dim3 grid_dim(batch_size * seq_length);

    dim3 block_dim(hidden_size / 4);

    fused_add3_kernel<<<grid_dim, block_dim, 0, stream>>>(
        out, inp1, inp2, inp3, (batch_size * seq_length * hidden_size), hidden_size / 4);
}

__global__ void fused_add4_kernel(float* out,
                                  const float* inp1,
                                  const float* inp2,
                                  const float* inp3,
                                  const float* inp4,
                                  int size,
                                  int row_stride)
{
    int row = blockIdx.x;
    int id = threadIdx.x;

    const float4* inp1_4 = reinterpret_cast<const float4*>(inp1);
    const float4* inp2_4 = reinterpret_cast<const float4*>(inp2);
    const float4* inp3_4 = reinterpret_cast<const float4*>(inp3);
    const float4* inp4_4 = reinterpret_cast<const float4*>(inp4);
    float4* out_4 = reinterpret_cast<float4*>(out);

    float4 val;
    float4 inp1_reg = inp1_4[row * row_stride + id];
    float4 inp2_reg = inp2_4[row * row_stride + id];
    float4 inp3_reg = inp3_4[row * row_stride + id];
    float4 inp4_reg = inp4_4[row * row_stride + id];

    val.x = inp1_reg.x + inp2_reg.x + inp3_reg.x + inp4_reg.x;
    val.y = inp1_reg.y + inp2_reg.y + inp3_reg.y + inp4_reg.y;
    val.z = inp1_reg.z + inp2_reg.z + inp3_reg.z + inp4_reg.z;
    val.w = inp1_reg.w + inp2_reg.w + inp3_reg.w + inp4_reg.w;

    out_4[row * row_stride + id] = val;
}

__global__ void fused_add4_kernel(__half* out,
                                  const __half* inp1,
                                  const __half* inp2,
                                  const __half* inp3,
                                  const __half* inp4,
                                  int size,
                                  int row_stride)
{
    int row = blockIdx.x;
    int id = threadIdx.x;
    const float2* inp1_arr = reinterpret_cast<const float2*>(inp1);
    const float2* inp2_arr = reinterpret_cast<const float2*>(inp2);
    const float2* inp3_arr = reinterpret_cast<const float2*>(inp3);
    const float2* inp4_arr = reinterpret_cast<const float2*>(inp4);

    float2 inp1_4 = inp1_arr[row * row_stride + id];
    float2 inp2_4 = inp2_arr[row * row_stride + id];
    float2 inp3_4 = inp3_arr[row * row_stride + id];
    float2 inp4_4 = inp4_arr[row * row_stride + id];

    __half2* inp1_h = reinterpret_cast<__half2*>(&inp1_4);
    __half2* inp2_h = reinterpret_cast<__half2*>(&inp2_4);
    __half2* inp3_h = reinterpret_cast<__half2*>(&inp3_4);
    __half2* inp4_h = reinterpret_cast<__half2*>(&inp4_4);

    float2 inp1_h_f_0 = __half22float2(inp1_h[0]);
    float2 inp1_h_f_1 = __half22float2(inp1_h[1]);

    float2 inp2_h_f_0 = __half22float2(inp2_h[0]);
    float2 inp2_h_f_1 = __half22float2(inp2_h[1]);

    float2 inp3_h_f_0 = __half22float2(inp3_h[0]);
    float2 inp3_h_f_1 = __half22float2(inp3_h[1]);

    float2 inp4_h_f_0 = __half22float2(inp4_h[0]);
    float2 inp4_h_f_1 = __half22float2(inp4_h[1]);

    inp1_h_f_0.x += (inp2_h_f_0.x + inp3_h_f_0.x + inp4_h_f_0.x);
    inp1_h_f_0.y += (inp2_h_f_0.y + inp3_h_f_0.y + inp4_h_f_0.y);
    inp1_h_f_1.x += (inp2_h_f_1.x + inp3_h_f_1.x + inp4_h_f_1.x);
    inp1_h_f_1.y += (inp2_h_f_1.y + inp3_h_f_1.y + inp4_h_f_1.y);

    float2 val_f;
    __half2* val_h = reinterpret_cast<__half2*>(&val_f);

    val_h[0] = __float22half2_rn(inp1_h_f_0);
    val_h[1] = __float22half2_rn(inp1_h_f_1);

    float2* out_4 = reinterpret_cast<float2*>(out);
    out_4[row * row_stride + id] = val_f;
}

template <>
void launch_fused_add4<float>(float* out,
                              const float* inp1,
                              const float* inp2,
                              const float* inp3,
                              const float* inp4,
                              int batch_size,
                              int seq_length,
                              int hidden_size,
                              cudaStream_t& stream)
{
    dim3 grid_dim(batch_size * seq_length);

    dim3 block_dim(hidden_size / 4);

    fused_add4_kernel<<<grid_dim, block_dim, 0, stream>>>(
        out, inp1, inp2, inp3, inp4, (batch_size * seq_length * hidden_size), hidden_size / 4);
}

template <>
void launch_fused_add4<__half>(__half* out,
                               const __half* inp1,
                               const __half* inp2,
                               const __half* inp3,
                               const __half* inp4,
                               int batch_size,
                               int seq_length,
                               int hidden_size,
                               cudaStream_t& stream)
{
    dim3 grid_dim(batch_size * seq_length);

    dim3 block_dim(hidden_size / 4);

    fused_add4_kernel<<<grid_dim, block_dim, 0, stream>>>(
        out, inp1, inp2, inp3, inp4, (batch_size * seq_length * hidden_size), hidden_size / 4);
}