gemm_test.h 10.1 KB
Newer Older
aiss's avatar
aiss committed
1
2
3
4
// Copyright (c) Microsoft Corporation.
// SPDX-License-Identifier: Apache-2.0

// DeepSpeed Team
aiss's avatar
aiss committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

#pragma once

#include <cuda_fp16.h>
#ifndef __HIP_PLATFORM_HCC__
#include <cuda_profiler_api.h>
#endif
#include <array>
#include <cstdio>
#include <cstdlib>
#include <ctime>
#include <limits>
#include <memory>
#include "StopWatch.h"
#include "cublas_wrappers.h"

template <typename T>
void check(T result, char const* const func, const char* const file, int const line)
{
    if (result) {
        std::cout << (std::string("CUDA runtime error: ") + +file + ":" + std::to_string(line) +
                      " \n");
    }
}

#define check_cuda_error(val) check((val), #val, __FILE__, __LINE__)

template <typename T>
class GemmTest {
public:
    GemmTest(int m, int n, int k, cublasOperation_t ta, cublasOperation_t tb, cublasHandle_t h)
        : M(m), N(n), K(k), transa(ta), transb(tb), handle(h)
    {
        check_cuda_error(cudaMalloc((void**)&A, sizeof(T) * M * K));
        check_cuda_error(cudaMalloc((void**)&B, sizeof(T) * K * N));
        check_cuda_error(cudaMalloc((void**)&C, sizeof(T) * M * N));
    }

    ~GemmTest()
    {
        check_cuda_error(cudaFree(A));
        check_cuda_error(cudaFree(B));
        check_cuda_error(cudaFree(C));
    }

    std::array<int, 3> TestAlgo(int loops)
    {
        float alpha = (T)1.0f;
        float beta = (T)0.0f;

        int algo_fw = Run(loops, [=](int algo) {
            cublas_gemm_ex(handle,
                           CUBLAS_OP_T,
                           CUBLAS_OP_N,
                           N,
                           M,
                           K,
                           &alpha,
                           &beta,
                           B,
                           A,
                           C,
#ifdef __HIP_PLATFORM_HCC__
                           static_cast<rocblas_gemm_algo>(algo));
#else
                           static_cast<cublasGemmAlgo_t>(algo));
#endif
        });

        int algo_bw1 = Run(loops, [=](int algo) {
            cublas_gemm_ex(handle,
                           CUBLAS_OP_N,
                           CUBLAS_OP_T,
                           K,
                           N,
                           M,
                           &alpha,
                           &beta,
                           A,
                           C,
                           B,
#ifdef __HIP_PLATFORM_HCC__
                           static_cast<rocblas_gemm_algo>(algo));
#else
                           static_cast<cublasGemmAlgo_t>(algo));
#endif
        });

        int algo_bw2 = Run(loops, [=](int algo) {
            cublas_gemm_ex(handle,
                           CUBLAS_OP_N,
                           CUBLAS_OP_N,
                           K,
                           M,
                           N,
                           &alpha,
                           &beta,
                           B,
                           C,
                           A,
#ifdef __HIP_PLATFORM_HCC__
                           static_cast<rocblas_gemm_algo>(algo));
#else
                           static_cast<cublasGemmAlgo_t>(algo));
#endif
        });

        return std::array<int, 3>({algo_fw, algo_bw1, algo_bw2});
    }

    template <typename Func>
    int Run(int loops, Func f)
    {
        float fast_latency = (std::numeric_limits<float>::max)();
        int fast_algo = 0;

#ifdef __HIP_PLATFORM_HCC__
        for (int algo = (int)rocblas_gemm_algo_standard; algo <= (int)rocblas_gemm_algo_standard;
#else
        for (int algo = (int)CUBLAS_GEMM_DEFAULT_TENSOR_OP;
             algo <= (int)CUBLAS_GEMM_ALGO15_TENSOR_OP;
#endif
             algo++) {
            int warm_up = 5;
            for (int i = 0; i < warm_up; ++i) f(algo);

            cudaDeviceSynchronize();
            Stopwatch timer;
            timer.Restart();

            for (int i = 0; i < loops; ++i) f(algo);

            cudaDeviceSynchronize();
            timer.Stop();

            float avg_latency = (float)timer.GetTimeInSeconds() * 1000 / loops;

            printf("algo-%d: %.3fms\n", algo, avg_latency);

            if (avg_latency < fast_latency) {
                fast_latency = avg_latency;
                fast_algo = algo;
            }
        }

        printf("fast_algo %d: %.3f ms\n", fast_algo, fast_latency);

        return fast_algo;
    }

private:
    int M, N, K;
    cublasHandle_t handle;
    cublasOperation_t transa, transb;
    T *A, *B, *C;
};

template <typename T>
class StridedGemmTest {
public:
    StridedGemmTest(int b,
                    int m,
                    int n,
                    int k,
                    cublasOperation_t ta,
                    cublasOperation_t tb,
                    cublasHandle_t h)
        : bsz(b), M(m), N(n), K(k), transa(ta), transb(tb), handle(h)
    {
        check_cuda_error(cudaMalloc((void**)&A, sizeof(T) * M * K * bsz));
        check_cuda_error(cudaMalloc((void**)&B, sizeof(T) * K * N * bsz));
        check_cuda_error(cudaMalloc((void**)&C, sizeof(T) * M * N * bsz));
    }

    ~StridedGemmTest()
    {
        check_cuda_error(cudaFree(A));
        check_cuda_error(cudaFree(B));
        check_cuda_error(cudaFree(C));
    }

    std::array<int, 3> TestAlgo(int loops)
    {
        float alpha = (T)1.0f;
        float beta = (T)0.0f;

        int algo_fw = Run(loops, [=](int algo) {
            int stride_a = M * K;
            int stride_b = N * K;
            int stride_c = M * N;

            cublas_strided_batched_gemm(handle,
                                        M,
                                        N,
                                        K,
                                        &alpha,
                                        &beta,
                                        A,
                                        B,
                                        C,
                                        transa,
                                        transb,
                                        stride_a,
                                        stride_b,
                                        stride_c,
                                        bsz,
#ifdef __HIP_PLATFORM_HCC__
                                        static_cast<rocblas_gemm_algo>(algo));
#else
                                        static_cast<cublasGemmAlgo_t>(algo));
#endif
        });

        int algo_bw1 = Run(loops, [=](int algo) {
            int mb = (transa == CUBLAS_OP_T ? K : M);
            int kb = (transa == CUBLAS_OP_T ? M : K);

            int stride_a = mb * N;
            int stride_b = N * kb;
            int stride_c = M * K;

            // B need to transpose.
            cublasOperation_t op_b = (transb == CUBLAS_OP_T ? CUBLAS_OP_N : CUBLAS_OP_T);

            // Calculate d_A.
            cublas_strided_batched_gemm(handle,
                                        mb,
                                        kb,
                                        N,
                                        &alpha,
                                        &beta,
                                        (transa == CUBLAS_OP_T ? B : C),
                                        (transa == CUBLAS_OP_T ? C : B),
                                        A,
                                        CUBLAS_OP_N,
                                        op_b,
                                        stride_a,
                                        stride_b,
                                        stride_c,
                                        bsz,
#ifdef __HIP_PLATFORM_HCC__
                                        static_cast<rocblas_gemm_algo>(algo));
#else
                                        static_cast<cublasGemmAlgo_t>(algo));
#endif
        });

        int algo_bw2 = Run(loops, [=](int algo) {
            // A need to transpose.
            cublasOperation_t op_a = (transa == CUBLAS_OP_T ? CUBLAS_OP_N : CUBLAS_OP_T);

            int stride_a = M * K;
            int stride_b = M * N;
            int stride_c = N * K;

            // Calculate d_B.
            cublas_strided_batched_gemm(handle,
                                        K,
                                        N,
                                        M,
                                        &alpha,
                                        &beta,
                                        A,
                                        C,
                                        B,
                                        op_a,
                                        CUBLAS_OP_N,
                                        stride_a,
                                        stride_b,
                                        stride_c,
                                        bsz,
#ifdef __HIP_PLATFORM_HCC__
                                        static_cast<rocblas_gemm_algo>(algo));
#else
                                        static_cast<cublasGemmAlgo_t>(algo));
#endif
        });

        return std::array<int, 3>({algo_fw, algo_bw1, algo_bw2});
    }

    template <typename Func>
    int Run(int loops, Func f)
    {
        float fast_latency = (std::numeric_limits<float>::max)();
        int fast_algo = 0;

#ifdef __HIP_PLATFORM_HCC__
        for (int algo = (int)rocblas_gemm_algo_standard; algo <= (int)rocblas_gemm_algo_standard;
#else
        for (int algo = (int)CUBLAS_GEMM_DEFAULT_TENSOR_OP;
             algo <= (int)CUBLAS_GEMM_ALGO15_TENSOR_OP;
#endif
             algo++) {
            int warm_up = 5;
            for (int i = 0; i < warm_up; ++i) f(algo);

            cudaDeviceSynchronize();
            Stopwatch timer;
            timer.Restart();

            for (int i = 0; i < loops; ++i) f(algo);

            cudaDeviceSynchronize();
            timer.Stop();

            float avg_latency = (float)timer.GetTimeInSeconds() * 1000 / loops;

            printf("algo-%d: %.3fms\n", algo, avg_latency);

            if (avg_latency < fast_latency) {
                fast_latency = avg_latency;
                fast_algo = algo;
            }
        }

        printf("fast_algo %d: %.3f ms\n", fast_algo, fast_latency);

        return fast_algo;
    }

private:
    int bsz, M, N, K;
    cublasHandle_t handle;
    cublasOperation_t transa, transb;
    T *A, *B, *C;
};