ds_aio_handle.py 5.07 KB
Newer Older
aiss's avatar
aiss committed
1
2
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
aiss's avatar
aiss committed
3

aiss's avatar
aiss committed
4
5
# DeepSpeed Team
"""
aiss's avatar
aiss committed
6
7
8
9
10
11
12
13
Functionality of swapping optimizer tensors to/from (NVMe) storage devices.
"""

import torch
import os
import time
from multiprocessing import Pool, Barrier
from test_ds_aio_utils import report_results, task_log, task_barrier
aiss's avatar
aiss committed
14
15
from deepspeed.accelerator import get_accelerator
from deepspeed.ops.op_builder import AsyncIOBuilder
aiss's avatar
aiss committed
16
17
18
19
20
21
22
23


def pre_handle(args, tid, read_op):
    io_string = "Read" if read_op else "Write"
    num_bytes = os.path.getsize(args.read_file) if read_op else args.write_size
    file = args.read_file if read_op else f'{args.write_file}.{tid}'

    io_parallel = args.io_parallel if args.io_parallel else 1
aiss's avatar
aiss committed
24
25
    handle = AsyncIOBuilder().load().aio_handle(args.block_size, args.queue_depth, args.single_submit,
                                                args.overlap_events, io_parallel)
aiss's avatar
aiss committed
26
27
28
    task_log(tid, f'Created deepspeed aio handle')

    if args.gpu:
aiss's avatar
aiss committed
29
        buffer = torch.empty(num_bytes, dtype=torch.uint8, device=get_accelerator().device_name())
aiss's avatar
aiss committed
30
31
    else:
        if args.use_accelerator_pin_memory:
aiss's avatar
aiss committed
32
            buffer = get_accelerator().pin_memory(torch.empty(num_bytes, dtype=torch.uint8, device='cpu'))
aiss's avatar
aiss committed
33
        else:
aiss's avatar
aiss committed
34
            buffer = handle.new_cpu_locked_tensor(num_bytes, torch.empty(0, dtype=torch.uint8))
aiss's avatar
aiss committed
35
36

    task_log(tid, f'Allocate tensor of size {num_bytes} bytes')
aiss's avatar
aiss committed
37
38
39
40
41
42
43
44

    ctxt = {}
    ctxt['file'] = file
    ctxt['num_bytes'] = num_bytes
    ctxt['handle'] = handle
    ctxt['buffer'] = buffer
    ctxt['elapsed_sec'] = 0

aiss's avatar
aiss committed
45
    task_log(tid, f'{io_string} file {file} of size {num_bytes} bytes from buffer on device {buffer.device}')
aiss's avatar
aiss committed
46

aiss's avatar
aiss committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    return ctxt


def pre_handle_read(pool_params):
    args, tid = pool_params
    ctxt = pre_handle(args, tid, True)
    return ctxt


def pre_handle_write(pool_params):
    args, tid = pool_params
    ctxt = pre_handle(args, tid, False)
    return ctxt


def post_handle(pool_params):
    _, _, ctxt = pool_params
    ctxt["buffer"].detach()
    ctxt["buffer"] = None
    return ctxt


def main_parallel_read(pool_params):
    args, tid, ctxt = pool_params
    handle = ctxt['handle']

    start_time = time.time()
    ret = handle.pread(ctxt['buffer'], ctxt['file'], args.validate, True)
    assert ret != -1
    handle.wait()
    end_time = time.time()
    ctxt['elapsed_sec'] += end_time - start_time

    return ctxt


def main_parallel_write(pool_params):
    args, tid, ctxt = pool_params
    handle = ctxt['handle']
    start_time = time.time()
    ret = handle.pwrite(ctxt['buffer'], ctxt['file'], args.validate, True)
    assert ret != -1
    handle.wait()
    end_time = time.time()
    ctxt['elapsed_sec'] += end_time - start_time

    return ctxt


def main_handle_read(pool_parms):
    args, tid, ctxt = pool_parms
    handle = ctxt['handle']

    start_time = time.time()
    ret = handle.read(ctxt['buffer'], ctxt['file'], args.validate)
    assert ret != -1
    end_time = time.time()
    ctxt['elapsed_sec'] += end_time - start_time

    return ctxt


def main_handle_write(pool_parms):
    args, tid, ctxt = pool_parms
    handle = ctxt['handle']
    start_time = time.time()
    ret = handle.write(ctxt['buffer'], ctxt['file'], args.validate)
    assert ret != -1
    end_time = time.time()
    ctxt['elapsed_sec'] += end_time - start_time

    return ctxt


def get_schedule(args, read_op):
    schedule = {}
    if read_op:
        schedule['pre'] = pre_handle_read
        schedule['post'] = post_handle
        schedule['main'] = main_parallel_read if args.io_parallel else main_handle_read
    else:
        schedule['pre'] = pre_handle_write
        schedule['post'] = post_handle
        schedule['main'] = main_parallel_write if args.io_parallel else main_handle_write

    return schedule


def _aio_handle_tasklet(pool_params):
    args, tid, read_op = pool_params

    # Create schedule
    schedule = get_schedule(args, read_op)
    task_log(tid, f'schedule = {schedule}')
    task_barrier(aio_barrier, args.threads)

    # Run pre task
    task_log(tid, f'running pre-task')
    ctxt = schedule["pre"]((args, tid))
    task_barrier(aio_barrier, args.threads)

    # Run main tasks in a loop
    ctxt["main_task_sec"] = 0
    for i in range(args.loops):
        task_log(tid, f'running main task {i}')
        start_time = time.time()
        ctxt = schedule["main"]((args, tid, ctxt))
        task_barrier(aio_barrier, args.threads)
        stop_time = time.time()
        ctxt["main_task_sec"] += stop_time - start_time

    # Run post task
    task_log(tid, f'running post-task')
    ctxt = schedule["post"]((args, tid, ctxt))
    task_barrier(aio_barrier, args.threads)

    return ctxt["main_task_sec"], ctxt["elapsed_sec"], ctxt["num_bytes"] * args.loops


def _init_tasklet(b):
    global aio_barrier
    aio_barrier = b


def aio_handle_multiprocessing(args, read_op):
    b = Barrier(args.threads)
    pool_params = [(args, p, read_op) for p in range(args.threads)]
    with Pool(processes=args.threads, initializer=_init_tasklet, initargs=(b, )) as p:
        pool_results = p.map(_aio_handle_tasklet, pool_params)

    report_results(args, read_op, pool_results)