"tests/vscode:/vscode.git/clone" did not exist on "eaa4f03d7103c9af3556e3f9b61aa7bfc286d7f0"
test_pipe.py 8.19 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist

import pytest

import deepspeed
import deepspeed.runtime.utils as ds_utils

from deepspeed.runtime.pipe.topology import PipeDataParallelTopology, PipeModelDataParallelTopology
PipeTopo = PipeDataParallelTopology
import deepspeed.runtime.pipe.module as PipelineModule
from deepspeed.runtime.pipe.module import LayerSpec

from common import distributed_test


def rel_diff(A, B):
    return abs(A - B) / abs(A)


# All models
from simple_model import args_from_dict


class AlexNet(nn.Module):
    def __init__(self, num_classes=10):
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3,
                      64,
                      kernel_size=11,
                      stride=4,
                      padding=5),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2,
                         stride=2),
            nn.Conv2d(64,
                      192,
                      kernel_size=5,
                      padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2,
                         stride=2),
            nn.Conv2d(192,
                      384,
                      kernel_size=3,
                      padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(384,
                      256,
                      kernel_size=3,
                      padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256,
                      256,
                      kernel_size=3,
                      padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2,
                         stride=2),
        )
        self.classifier = nn.Linear(256, num_classes)
        self.loss_fn = nn.CrossEntropyLoss()

    def forward(self, x, y):
        x = self.features(x)
        x = x.view(x.size(0), -1)
        x = self.classifier(x)
        return self.loss_fn(x, y)


class AlexNetPipe(PipelineModule.PipelineModule):
    def __init__(self, num_classes=10, **kwargs):
        self.num_classes = num_classes
        specs = [
            LayerSpec(nn.Conv2d, 3, 64, kernel_size=11, stride=4, padding=5),
            LayerSpec(nn.ReLU, inplace=True),
            LayerSpec(nn.MaxPool2d, kernel_size=2, stride=2),
            LayerSpec(nn.Conv2d, 64, 192, kernel_size=5, padding=2),
            F.relu,
            LayerSpec(nn.MaxPool2d, kernel_size=2, stride=2),
            LayerSpec(nn.Conv2d, 192, 384, kernel_size=3, padding=1),
            F.relu,
            LayerSpec(nn.Conv2d, 384, 256, kernel_size=3, padding=1),
            F.relu,
            LayerSpec(nn.Conv2d, 256, 256, kernel_size=3, padding=1),
            F.relu,
            LayerSpec(nn.MaxPool2d, kernel_size=2, stride=2),

            lambda x: x.view(x.size(0), -1),
            LayerSpec(nn.Linear, 256, self.num_classes), # classifier
        ]
        super().__init__(layers=specs, loss_fn=nn.CrossEntropyLoss(), **kwargs)


def cifar_trainset(fp16=False):
    import torchvision
    import torchvision.transforms as transforms

    transform_list = [
        transforms.ToTensor(),
        transforms.Normalize((0.5,
                              0.5,
                              0.5),
                             (0.5,
                              0.5,
                              0.5)),
    ]
    if fp16:
        transform_list.append(torchvision.transforms.Lambda(lambda x: x.half()))

    transform = transforms.Compose(transform_list)

    local_rank = torch.cuda.current_device()

    # Only one rank per machine downloads.
    dist.barrier()
    if local_rank != 0:
        dist.barrier()
    trainset = torchvision.datasets.CIFAR10(root='/tmp/cifar10-data',
                                            train=True,
                                            download=True,
                                            transform=transform)
    if local_rank == 0:
        dist.barrier()
    return trainset


def train_cifar(model, args, num_steps=400, average_dp_losses=True, fp16=True, seed=123):
    with torch.random.fork_rng(devices=[torch.cuda.current_device()]):
        ds_utils.set_random_seed(seed)

        trainset = cifar_trainset(fp16=fp16)
        args.local_rank = dist.get_rank()

        engine, _, _, _ = deepspeed.initialize(
            args=args,
            model=model,
            model_parameters=[p for p in model.parameters()],
            training_data=trainset)

        losses = []
        for step in range(num_steps):
            loss = engine.train_batch()
            losses.append(loss.item())
            if step % 50 == 0:
                print(f'STEP={step} LOSS={loss.item()}')

        if average_dp_losses:
            loss_tensor = torch.tensor(losses).cuda()
            dist.all_reduce(loss_tensor)
            loss_tensor /= dist.get_world_size()
            losses = loss_tensor.tolist()

    return losses


@pytest.mark.parametrize('base_topo,test_topo',
                         [
                             (PipeTopo(num_pp=1,
                                       num_dp=4),
                              PipeTopo(num_pp=2,
                                       num_dp=2)),
                             (PipeTopo(num_pp=1,
                                       num_dp=4),
                              PipeTopo(num_pp=4,
                                       num_dp=1)),
                         ])
def test_pipe_cifar10_seedlayers(base_topo, test_topo, tmpdir):
    config_dict = {
        "train_batch_size": 16,
        "train_micro_batch_size_per_gpu": 4,
        "steps_per_print": 20,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.001,
                "betas": [0.9,
                          0.999],
                "eps": 1e-8,
                "weight_decay": 3e-7
            }
        },
        "zero_optimization": {
            "stage": 0
        },
        "fp16": {
            "enabled": False
        },
        "pipeline": {
            "seed_layers": True,
            "activation_checkpoint_interval": 1
        }
    }
    args = args_from_dict(tmpdir, config_dict)

    @distributed_test(world_size=4)
    def _helper(base_topo, test_topo, tmpdir, steps=500):
        assert steps >= 100

        base_model = AlexNetPipe(num_classes=10,
                                 topology=base_topo,
                                 seed_layers=config_dict['pipeline']['seed_layers'])
        base_losses = train_cifar(base_model,
                                  args,
                                  num_steps=steps,
                                  fp16=config_dict['fp16']['enabled'])

        test_model = AlexNetPipe(num_classes=10,
                                 topology=test_topo,
                                 seed_layers=config_dict['pipeline']['seed_layers'])
        test_losses = train_cifar(test_model,
                                  args,
                                  num_steps=steps,
                                  fp16=config_dict['fp16']['enabled'])

        abs_diffs = [l0 - l1 for l0, l1 in zip(base_losses, test_losses)]
        rel_diffs = [rel_diff(l0, l1) for l0, l1 in zip(base_losses, test_losses)]
        if dist.get_rank() == 0:
            print(
                f'abs min={min(abs_diffs)} max={max(abs_diffs)} avg={sum(abs_diffs)/len(abs_diffs)}'
            )
            print(
                f'rel min={min(rel_diffs)} max={max(rel_diffs)} avg={sum(rel_diffs)/len(rel_diffs)}'
            )
            print(
                f'first: base={base_losses[0]} test={test_losses[0]} abs={abs_diffs[0]} rel={rel_diffs[0]}'
            )

            for lastX in [1, 10, 100]:
                base_avg = sum(base_losses[-lastX:]) / lastX
                test_avg = sum(test_losses[-lastX:]) / lastX
                print(
                    f'last-{lastX}: base={base_avg} test={test_avg} abs={base_avg - test_avg} rel={rel_diff(base_avg, test_avg)}'
                )

        lastX = 100
        base = base_losses[-lastX:]
        base_avg = sum(base) / len(base)
        test = test_losses[-lastX:]
        test_avg = sum(test) / len(test)
        assert rel_diff(base_avg, test_avg) < 0.03

    _helper(base_topo, test_topo, tmpdir)