simple_model.py 10.2 KB
Newer Older
aiss's avatar
aiss committed
1
2
'''Copyright The Microsoft DeepSpeed Team'''

3
4
5
6
7
import os
import json
import argparse
import torch

8
from deepspeed.pipe import PipelineModule, LayerSpec
aiss's avatar
aiss committed
9
from deepspeed.moe.layer import MoE
aiss's avatar
aiss committed
10
11
12
from deepspeed.accelerator import get_accelerator

import deepspeed.comm as dist
13

14
15

class SimpleModel(torch.nn.Module):
aiss's avatar
aiss committed
16
    def __init__(self, hidden_dim, empty_grad=False, nlayers=1):
17
        super(SimpleModel, self).__init__()
aiss's avatar
aiss committed
18
19
20
        self.linears = torch.nn.ModuleList(
            [torch.nn.Linear(hidden_dim,
                             hidden_dim) for i in range(nlayers)])
21
        if empty_grad:
Jeff Rasley's avatar
Jeff Rasley committed
22
            self.linear2 = torch.nn.Linear(hidden_dim, hidden_dim)
23
        self.cross_entropy_loss = torch.nn.CrossEntropyLoss()
Jeff Rasley's avatar
Jeff Rasley committed
24
        self.empty_grad = empty_grad
25
26

    def forward(self, x, y):
aiss's avatar
aiss committed
27
28
        if len(self.linears) == 1:
            x = self.linears[0](x)
Jeff Rasley's avatar
Jeff Rasley committed
29
        else:
aiss's avatar
aiss committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
            for i, l in enumerate(self.linears):
                x = self.linears[i // 2](x) + l(x)
        return self.cross_entropy_loss(x, y)


class Curriculum_SimpleModel(SimpleModel):
    def __init__(self, hidden_dim, empty_grad=False):
        super(Curriculum_SimpleModel, self).__init__(hidden_dim, empty_grad)

    def forward(self, x, y, **kwargs):
        seqlen = kwargs.get('curriculum_seqlen', None)
        loss = super(Curriculum_SimpleModel, self).forward(x, y)
        return loss, seqlen


class SimpleMoEModel(torch.nn.Module):
    def __init__(self, hidden_dim, num_experts=4, ep_size=1, use_residual=False):
        super(SimpleMoEModel, self).__init__()
        self.linear = torch.nn.Linear(hidden_dim, hidden_dim)
aiss's avatar
aiss committed
49
50
        expert = torch.nn.Linear(hidden_dim, hidden_dim)
        # using two MoE layers to check implications of sharing a single storage
aiss's avatar
aiss committed
51
        self.linear2 = MoE(hidden_size=hidden_dim,
aiss's avatar
aiss committed
52
53
54
55
56
57
58
                           expert=expert,
                           ep_size=ep_size,
                           use_residual=use_residual,
                           num_experts=num_experts,
                           k=1)
        self.linear3 = MoE(hidden_size=hidden_dim,
                           expert=expert,
aiss's avatar
aiss committed
59
60
61
62
63
64
65
                           ep_size=ep_size,
                           use_residual=use_residual,
                           num_experts=num_experts,
                           k=1)
        self.cross_entropy_loss = torch.nn.CrossEntropyLoss()

    def forward(self, x, y):
aiss's avatar
aiss committed
66
        hidden_dim = self.linear(x)
aiss's avatar
aiss committed
67
        output, _, _ = self.linear2(hidden_dim)
aiss's avatar
aiss committed
68
        output, _, _ = self.linear3(output)
aiss's avatar
aiss committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
        hidden_dim = hidden_dim + output
        sentence_embed = hidden_dim.mean(1)
        return self.cross_entropy_loss(sentence_embed, y)


class SimplePRMoEModel(torch.nn.Module):
    def __init__(self, hidden_dim, num_experts=2, ep_size=1, use_residual=False):
        super(SimplePRMoEModel, self).__init__()
        self.linear = torch.nn.Linear(hidden_dim, hidden_dim)
        linear2 = torch.nn.Linear(hidden_dim, hidden_dim)
        self.linear2 = MoE(hidden_size=hidden_dim,
                           expert=linear2,
                           ep_size=ep_size,
                           use_residual=use_residual,
                           num_experts=num_experts,
                           k=1)
        linear3 = torch.nn.Linear(hidden_dim, hidden_dim)
        self.linear3 = MoE(hidden_size=hidden_dim,
                           expert=linear3,
                           ep_size=ep_size,
                           use_residual=use_residual,
                           num_experts=int(2 * num_experts),
                           k=1)
        self.cross_entropy_loss = torch.nn.CrossEntropyLoss()

    def forward(self, x, y):
        hidden_dim = x
        hidden_dim = self.linear(hidden_dim)
        output, _, _ = self.linear2(hidden_dim)
        output, _, _ = self.linear3(output)
        hidden_dim = hidden_dim + output
        sentence_embed = hidden_dim.mean(1)
        return self.cross_entropy_loss(sentence_embed, y)


class UnusedParametersModel(SimpleModel):
    def __init__(self, hidden_dim, empty_grad=False):
        super().__init__(hidden_dim, empty_grad)

        self.unused_linear = torch.nn.Linear(hidden_dim, hidden_dim)
109
110


111
112
113
114
115
116
117
class LinearStack(torch.nn.Module):
    def __init__(self, input_dim=128, hidden_dim=128, output_dim=128, num_layers=4):
        super().__init__()
        self.input_dim = input_dim
        self.output_dim = output_dim
        self.hidden_dim = hidden_dim

118
119
        self.input_layer = torch.nn.Linear(in_features=self.input_dim,
                                           out_features=self.hidden_dim)
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
        self.layers = torch.nn.ModuleList([
            torch.nn.Linear(in_features=self.hidden_dim,
                            out_features=self.hidden_dim,
                            bias=False) for x in range(num_layers)
        ])
        self.output_layer = torch.nn.Linear(in_features=self.hidden_dim,
                                            out_features=self.output_dim)

        self.cross_entropy_loss = torch.nn.CrossEntropyLoss()

    def forward(self, x, y):
        x = self.input_layer(x)
        for layer in self.layers:
            x = layer(x)
        x = self.output_layer(x)
        return x


class LinearStackPipe(PipelineModule):
    def __init__(self,
                 input_dim=128,
                 hidden_dim=128,
                 output_dim=128,
                 num_layers=4,
                 **kwargs):
        self.input_dim = input_dim
        self.output_dim = output_dim
        self.hidden_dim = hidden_dim
        self.num_layers = num_layers

        layers = []
        layers.append(LayerSpec(torch.nn.Linear, self.input_dim, self.hidden_dim))
        for x in range(self.num_layers):
            layers.append(
                LayerSpec(torch.nn.Linear,
                          self.hidden_dim,
                          self.hidden_dim,
                          bias=False))
            layers.append(lambda x: x)
        layers.append(LayerSpec(torch.nn.Linear, self.hidden_dim, self.output_dim))

        super().__init__(layers=layers, loss_fn=torch.nn.CrossEntropyLoss(), **kwargs)


164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
class SimpleOptimizer(torch.optim.Optimizer):
    def __init__(self, params, lr=0.11072018):
        defaults = dict(lr=lr)
        super(SimpleOptimizer, self).__init__(params, defaults)

    def __setstate__(self, state):
        super(SimpleOptimizer, self).__setstate__(state)

    def step(self, closure=None):
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                d_p = p.grad.data
                p.data.add_(-group['lr'], d_p)

        return loss


187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
class HybridStateOptimizer(torch.optim.Optimizer):
    def __init__(self, params, lr=0.11072018):
        defaults = dict(lr=lr)
        super(HybridStateOptimizer, self).__init__(params, defaults)

    def __setstate__(self, state):
        super(HybridStateOptimizer, self).__setstate__(state)

    def step(self, closure=None):
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue

                state = self.state[p]
                if len(state) == 0:
                    state['integer_step'] = 0
aiss's avatar
aiss committed
208
                    state['tensor_step'] = torch.zeros(1, device=p.device)
209
210
211
212
213
214
215
216
217

                d_p = p.grad.data
                p.data.add_(-group['lr'], d_p)
                state['integer_step'] += 1
                state['tensor_step'] += 1

        return loss


Olatunji Ruwase's avatar
Olatunji Ruwase committed
218
class PLD_SimpleModel(SimpleModel):
219
220
    def __init__(self, hidden_dim, empty_grad=False):
        super(PLD_SimpleModel, self).__init__(hidden_dim, empty_grad)
Olatunji Ruwase's avatar
Olatunji Ruwase committed
221
222
223
224
225
226
227
228

    def forward(self, x, y, **kwargs):
        pld = kwargs.get('progressive_layer_drop', False)
        theta = kwargs.get('pld_theta', 1.0)
        hidden_dim = super(PLD_SimpleModel, self).forward(x, y)
        return hidden_dim


aiss's avatar
aiss committed
229
230
231
232
233
234
235
236
237
def random_dataset(total_samples, hidden_dim, device, dtype=torch.half):
    train_data = torch.randn(total_samples, hidden_dim, device=device, dtype=dtype)
    train_label = torch.empty(total_samples,
                              dtype=torch.long,
                              device=device).random_(hidden_dim)
    train_dataset = torch.utils.data.TensorDataset(train_data, train_label)
    return train_dataset


238
def random_dataloader(model, total_samples, hidden_dim, device, dtype=torch.half):
239
    batch_size = model.train_micro_batch_size_per_gpu()
aiss's avatar
aiss committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
    train_dataset = random_dataset(total_samples, hidden_dim, device, dtype=dtype)
    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size)
    return train_loader


def sequence_dataloader(model,
                        total_samples,
                        hidden_dim,
                        device,
                        seq_len: int = 32,
                        dtype=torch.half):
    batch_size = model.train_micro_batch_size_per_gpu()
    train_data = torch.randn(total_samples,
                             seq_len,
                             hidden_dim,
                             device=device,
                             dtype=dtype)
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
    train_label = torch.empty(total_samples,
                              dtype=torch.long,
                              device=device).random_(hidden_dim)
    train_dataset = torch.utils.data.TensorDataset(train_data, train_label)
    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size)
    return train_loader


def create_config_from_dict(tmpdir, config_dict):
    config_path = os.path.join(tmpdir, 'temp_config.json')
    with open(config_path, 'w') as fd:
        json.dump(config_dict, fd)
    return config_path


272
def create_deepspeed_args():
273
274
275
    parser = argparse.ArgumentParser()
    args = parser.parse_args(args='')
    args.deepspeed = True
aiss's avatar
aiss committed
276
    if dist.is_initialized():
277
        # We assume up to one full node executing unit tests
aiss's avatar
aiss committed
278
279
        assert dist.get_world_size() <= get_accelerator().device_count()
        args.local_rank = dist.get_rank()
280
    return args
281
282
283
284
285
286
287


def args_from_dict(tmpdir, config_dict):
    args = create_deepspeed_args()
    config_path = create_config_from_dict(tmpdir, config_dict)
    args.deepspeed_config = config_path
    return args