test_coalesced_collectives.py 2.52 KB
Newer Older
aiss's avatar
aiss committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
'''Copyright The Microsoft DeepSpeed Team'''
"""unit tests for coalesced collectives"""

import torch
import deepspeed.comm as dist
from deepspeed.runtime.comm.coalesced_collectives import reduce_scatter_coalesced
from deepspeed.accelerator import get_accelerator

from unit.common import DistributedTest


class TestReduceScatterCoalesced(DistributedTest):
    world_size = 2

    def test_single_input(self):
        input = torch.full((6,
                            ),
                           dist.get_rank(),
                           dtype=torch.half,
                           device=get_accelerator().current_device_name())

        (output, ) = reduce_scatter_coalesced([input], dist.get_world_group())

        assert output.shape == (3, )
        assert torch.allclose(output, torch.full_like(output, 0.5))

    def test_two_inputs(self):
        tensor_kwargs = {
            "device": get_accelerator().current_device_name(),
            "dtype": torch.half
        }
        inputs = [
            dist.get_rank() * torch.arange(0,
                                           6,
                                           **tensor_kwargs),
            dist.get_rank() * torch.arange(6,
                                           9,
                                           **tensor_kwargs),
        ]

        output1, output2 = reduce_scatter_coalesced(inputs, dist.get_world_group())

        if dist.get_rank() == 0:
            assert output1.shape == (3, )
            assert torch.allclose(output1, torch.arange(0, 3, **tensor_kwargs) / 2)
            assert output2.shape == (2, )
            assert torch.allclose(output2, torch.arange(6, 8, **tensor_kwargs) / 2)
        elif dist.get_rank() == 1:
            assert output1.shape == (3, )
            assert torch.allclose(output1, torch.arange(3, 6, **tensor_kwargs) / 2)
            assert output2.shape == (1, )
            assert torch.allclose(output2, torch.arange(8, 9, **tensor_kwargs) / 2)


class TestReduceScatterCoalescedTensorSmallerThanWorldSize(DistributedTest):
    world_size = 2

    def test(self):
        input = torch.zeros((1,
                             ),
                            dtype=torch.half,
                            device=get_accelerator().current_device_name())

        (output, ) = reduce_scatter_coalesced([input], dist.get_world_group())

        if dist.get_rank() == 0:
            assert output.shape == (1, )
            assert torch.allclose(output, torch.zeros_like(output))
        elif dist.get_rank() == 1:
            assert output.shape == (0, )