"vscode:/vscode.git/clone" did not exist on "a2b210130f140bc1ec94d80d727e7c3d0e08a1ac"
test_flops_profiler.py 4.13 KB
Newer Older
aiss's avatar
aiss committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
'''Copyright The Microsoft DeepSpeed Team'''

import torch
import pytest
import deepspeed
from deepspeed.profiling.flops_profiler import get_model_profile
from unit.simple_model import SimpleModel, random_dataloader
from unit.common import DistributedTest

TORCH_MAJOR = int(torch.__version__.split('.')[0])
TORCH_MINOR = int(torch.__version__.split('.')[1])
pytestmark = pytest.mark.skipif(TORCH_MAJOR < 1
                                or (TORCH_MAJOR == 1 and TORCH_MINOR < 3),
                                reason='requires Pytorch version 1.3 or above')


def within_range(val, target, tolerance):
    return abs(val - target) / target < tolerance


TOLERANCE = 0.05


class LeNet5(torch.nn.Module):
    def __init__(self, n_classes):
        super(LeNet5, self).__init__()

        self.feature_extractor = torch.nn.Sequential(
            torch.nn.Conv2d(in_channels=1,
                            out_channels=6,
                            kernel_size=5,
                            stride=1),
            torch.nn.Tanh(),
            torch.nn.AvgPool2d(kernel_size=2),
            torch.nn.Conv2d(in_channels=6,
                            out_channels=16,
                            kernel_size=5,
                            stride=1),
            torch.nn.Tanh(),
            torch.nn.AvgPool2d(kernel_size=2),
            torch.nn.Conv2d(in_channels=16,
                            out_channels=120,
                            kernel_size=5,
                            stride=1),
            torch.nn.Tanh(),
        )

        self.classifier = torch.nn.Sequential(
            torch.nn.Linear(in_features=120,
                            out_features=84),
            torch.nn.Tanh(),
            torch.nn.Linear(in_features=84,
                            out_features=n_classes),
        )

    def forward(self, x):
        x = self.feature_extractor(x)
        x = torch.flatten(x, 1)
        logits = self.classifier(x)
        probs = torch.nn.functional.softmax(logits, dim=1)
        return logits, probs


class TestFlopsProfiler(DistributedTest):
    world_size = 1

    def test(self):
        config_dict = {
            "train_batch_size": 1,
            "steps_per_print": 1,
            "optimizer": {
                "type": "Adam",
                "params": {
                    "lr": 0.001,
                }
            },
            "zero_optimization": {
                "stage": 0
            },
            "fp16": {
                "enabled": True,
            },
            "flops_profiler": {
                "enabled": True,
                "step": 1,
                "module_depth": -1,
                "top_modules": 3,
            },
        }
        hidden_dim = 10
        model = SimpleModel(hidden_dim, empty_grad=False)

        model, _, _, _ = deepspeed.initialize(config=config_dict,
                                            model=model,
                                            model_parameters=model.parameters())

        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device,
                                        dtype=torch.half)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()
            if n == 3: break
        assert within_range(model.flops_profiler.flops, 200, tolerance=TOLERANCE)
        assert model.flops_profiler.params == 110

    def test_flops_profiler_in_inference(self):
        mod = LeNet5(10)
        batch_size = 1024
        input = torch.randn(batch_size, 1, 32, 32)
        flops, macs, params = get_model_profile(
            mod,
            tuple(input.shape),
            print_profile=True,
            detailed=True,
            module_depth=-1,
            top_modules=3,
            warm_up=1,
            as_string=False,
            ignore_modules=None,
        )
        print(flops, macs, params)
        assert within_range(flops, 866076672, TOLERANCE)
        assert within_range(macs, 426516480, TOLERANCE)
        assert params == 61706