megatron_model.py 4.08 KB
Newer Older
aiss's avatar
aiss committed
1
2
'''Copyright The Microsoft DeepSpeed Team'''

aiss's avatar
aiss committed
3
4
5
6
7
8
9
import torch
import os
import sys
import math

from .common import get_test_path
from deepspeed.pipe import PipelineModule, LayerSpec
aiss's avatar
aiss committed
10
from deepspeed.accelerator import get_accelerator
aiss's avatar
aiss committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42


def get_megatron_version():
    p = os.popen("pip list --format=columns | grep megatron-lm")
    pip_list = p.read()
    assert 'megatron-lm' in pip_list, 'Please install Megatron-LM before getting its version'
    ver_str = pip_list.split()[1]
    return float(ver_str[0])


def get_gpt2_model(args_others, mp_size=1):
    from megatron.model import GPT2Model
    from megatron.initialize import initialize_megatron

    args_defaults = {
        'vocab_file': get_test_path('gpt2-vocab.json'),
        'merge_file': get_test_path('gpt2-merges.txt'),
        'tokenizer_type': 'GPT2BPETokenizer',
    }

    args_defaults.update(args_others)

    # setting "make-vocab-size-divisible-by" to avoid word-embedding size change in resizing testing.
    sys.argv.extend([
        '--model-parallel-size',
        str(mp_size),
        '--make-vocab-size-divisible-by',
        str(1)
    ])

    initialize_megatron(args_defaults=args_defaults, ignore_unknown_args=True)
    model = GPT2Model(num_tokentypes=0, parallel_output=False)
aiss's avatar
aiss committed
43
    model.to(get_accelerator().device_name())
aiss's avatar
aiss committed
44
45
    from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
    from megatron import mpu
aiss's avatar
aiss committed
46
    i = get_accelerator().current_device_name()
aiss's avatar
aiss committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    model = torchDDP(model,
                     device_ids=[i],
                     output_device=i,
                     process_group=mpu.get_data_parallel_group())

    return model


class MockGPT2ModelPipe(PipelineModule):
    def __init__(self, num_layers, mp_size, args_others, topo, **kwargs):
        from megatron.initialize import initialize_megatron

        args_defaults = {
            'vocab_file': get_test_path('gpt2-vocab.json'),
            'merge_file': get_test_path('gpt2-merges.txt'),
            'tokenizer_type': 'GPT2BPETokenizer',
        }

        args_defaults.update(args_others)

        # setting "make-vocab-size-divisible-by" to avoid word-embedding size change in resizing testing.
        sys.argv.extend([
            '--model-parallel-size',
            str(mp_size),
            '--make-vocab-size-divisible-by',
            str(1)
        ])

        initialize_megatron(args_defaults=args_defaults, ignore_unknown_args=True)

        from megatron.model.transformer import ParallelTransformerLayer

        class ParallelTransformerLayerPipe(ParallelTransformerLayer):
            def forward(self, args):
                # hardcode attn mask for testing, PP requires the attn_mask to be stashed
aiss's avatar
aiss committed
82
83
84
                attention_mask = torch.tensor(
                    [[True]],
                    device=get_accelerator().current_device_name())
aiss's avatar
aiss committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
                return super().forward(args, attention_mask)

        layers = []
        for x in range(num_layers):
            layers.append(
                LayerSpec(ParallelTransformerLayerPipe,
                          self.gpt2_attention_mask_func,
                          self.init_method_normal(0.02),
                          self.scaled_init_method_normal(0.02,
                                                         num_layers),
                          x))
        super().__init__(layers=layers,
                         loss_fn=torch.nn.CrossEntropyLoss(),
                         topology=topo,
                         **kwargs)

    def gpt2_attention_mask_func(self, attention_scores, ltor_mask):
        attention_scores.masked_fill_(ltor_mask, -10000.0)
        return attention_scores

    def init_method_normal(self, sigma):
        """Init method based on N(0, sigma)."""
        def init_(tensor):
            return torch.nn.init.normal_(tensor, mean=0.0, std=sigma)

        return init_

    def scaled_init_method_normal(self, sigma, num_layers):
        """Init method based on N(0, sigma/sqrt(2*num_layers)."""
        std = sigma / math.sqrt(2.0 * num_layers)

        def init_(tensor):
            return torch.nn.init.normal_(tensor, mean=0.0, std=std)

        return init_